Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 18(11): 2377-2384, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37939374

ABSTRACT

Androgen signaling in prostate cancer cells involves multisite cysteine ADP-ribosylation of the androgen receptor (AR) by PARP7. The AR modification is read by ADP-ribosyl binding macrodomains in PARP9, but the reason that multiple cysteines are modified is unknown. Here, we use synthetic peptides to show that dual ADP-ribosylation of closely spaced cysteines mediates recognition by the DTX3L/PARP9 complex. Mono and dual ADP-ribosylated cysteine peptides were prepared using a novel solid-phase synthetic strategy utilizing a key, Boc-protected, ribofuranosylcysteine building block. This synthetic strategy allowed us to synthesize fluorescently labeled peptides containing a dual ADP-ribosylation motif. It was found that the DTX3L/PARP9 complex recognizes the dual ADP-ribosylated AR peptide (Kd = 80.5 nM) with significantly higher affinity than peptides with a single ADP-ribose. Moreover, oligomerization of the DTX3L/PARP9 complex proved crucial for ADP-ribosyl-peptide interaction since a deletion mutant of the complex that prevents its oligomer formation dramatically reduced peptide binding. Our data show that features of the substrate modification and the reader contribute to the efficiency of the interaction and imply that multivalent interactions are important for AR-DTX3L/PARP9 assembly.


Subject(s)
Cysteine , Prostatic Neoplasms , Male , Humans , Cysteine/metabolism , Receptors, Androgen/metabolism , ADP-Ribosylation , Peptides/chemistry , Adenosine Diphosphate Ribose/metabolism , Ubiquitin-Protein Ligases/metabolism , Neoplasm Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism
2.
Sci Adv ; 9(37): eadi2687, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37703374

ABSTRACT

PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.


Subject(s)
COVID-19 , Transferases , Humans , Poly(ADP-ribose) Polymerase Inhibitors , Antiviral Agents , Hydrolases , Poly(ADP-ribose) Polymerases/genetics
3.
J Am Chem Soc ; 145(25): 14000-14009, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37315125

ABSTRACT

We report here chemoenzymatic and fully synthetic methodologies to modify aspartate and glutamate side chains with ADP-ribose at specific sites on peptides. Structural analysis of aspartate and glutamate ADP-ribosylated peptides reveals near-quantitative migration of the side chain linkage from the anomeric carbon to the 2″- or 3″-ADP-ribose hydroxyl moieties. We find that this linkage migration pattern is unique to aspartate and glutamate ADP-ribosylation and propose that the observed isomer distribution profile is present in biochemical and cellular environments. After defining distinct stability properties of aspartate and glutamate ADP-ribosylation, we devise methods to install homogenous ADP-ribose chains at specific glutamate sites and assemble glutamate-modified peptides into full-length proteins. By implementing these technologies, we show that histone H2B E2 tri-ADP-ribosylation is able to stimulate the chromatin remodeler ALC1 with similar efficiency to histone serine ADP-ribosylation. Our work reveals fundamental principles of aspartate and glutamate ADP-ribosylation and enables new strategies to interrogate the biochemical consequences of this widespread protein modification.


Subject(s)
Aspartic Acid , Glutamic Acid , Aspartic Acid/metabolism , Glutamic Acid/metabolism , ADP-Ribosylation , Histones/metabolism , Adenosine Diphosphate Ribose/chemistry , Adenosine Diphosphate Ribose/metabolism , Peptides/chemistry
4.
J Am Chem Soc ; 144(45): 20582-20589, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36318515

ABSTRACT

We describe the development and optimization of a methodology to prepare peptides and proteins modified on the arginine residue with an adenosine-di-phosphate-ribosyl (ADPr) group. Our method comprises reacting an ornithine containing polypeptide on-resin with an α-linked anomeric isothiourea N-riboside, ensuing installment of a phosphomonoester at the 5'-hydroxyl of the ribosyl moiety followed by the conversion into the adenosine diphosphate. We use this method to obtain four regioisomers of ADP-ribosylated ubiquitin (UbADPr), each modified with an ADP-ribosyl residue on a different arginine position within the ubiquitin (Ub) protein (Arg42, Arg54, Arg72, and Arg74) as the first reported examples of fully synthetic arginine-linked ADPr-modified proteins. We show the chemically prepared Arg-linked UbADPr to be accepted and processed by Legionella enzymes and compare the entire suite of four Arg-linked UbADPr regioisomers in a variety of biochemical experiments, allowing us to profile the activity and selectivity of Legionella pneumophila ligase and hydrolase enzymes.


Subject(s)
Adenosine Diphosphate Ribose , Arginine , Adenosine Diphosphate Ribose/chemistry , Arginine/metabolism , ADP-Ribosylation , Ubiquitin/chemistry , Ubiquitinated Proteins/metabolism , Peptides/chemistry
5.
J Chem Educ ; 94(9): 1285-1287, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28919644

ABSTRACT

The "exploding" flask demonstration presents a well-known illustration of heterogeneous catalyzed methanol oxidation. We find that for the same vapor pressure, the demonstration also works for all primary and secondary alcohols up to butanol but not for a tertiary alcohol. Also, we show that the demonstration works for a large range of transition metal catalysts. Hence, this demonstration, which is often applied for the repetitive explosions when methanol is used, may also be used to argue the requirement of initial dehydrogenation of the alcohol to an aldehyde in the catalytic reaction mechanism to support the general insensitivity to reactant molecules in heterogeneous catalysis in contrast to biological catalysis and to provide proof for activity trends as often depicted by volcano plots.

SELECTION OF CITATIONS
SEARCH DETAIL
...