Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(5): e202103894, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34822193

ABSTRACT

Methane dehydroaromatization is a promising reaction for the direct conversion of methane to liquid hydrocarbons. The active sites and the mechanism of this reaction remain controversial. This work is focused on the operando X-ray absorption near edge structure spectroscopy analysis of conventional Mo/ZSM-5 catalysts during their whole lifetime. Complemented by other characterization techniques, we derived spectroscopic descriptors of molybdenum precursor decomposition and its exchange with zeolite Brønsted acid sites. We found that the reduction of Mo-species proceeds in two steps and the active sites are of similar nature, regardless of the Mo content. Furthermore, the ZSM-5 unit cell contracts at the beginning of the reaction, which coincides with benzene formation and it is likely related to the formation of hydrocarbon pool intermediates. Finally, although reductive regeneration of used catalysts via methanation is less effective as compared to combustion of coke, it does not affect the structure of the catalysts.

2.
ACS Catal ; 8(9): 8459-8467, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30271670

ABSTRACT

Surface carbon (coke, carbonaceous deposits) is an integral aspect of methane dehydroaromatization catalyzed by Mo/zeolites. We investigated the evolution of surface carbon species from the beginning of the induction period until the complete catalyst deactivation by the pulse reaction technique, TGA, 13C NMR, TEM, and XPS. Isotope labeling was performed to confirm the catalytic role of confined carbon species during MDA. It was found that "hard" and "soft" coke distinction is mainly related to the location of coke species inside the pores and on the external surface, respectively. In addition, MoO3 species act as an active oxidation catalyst, reducing the combustion temperature of a certain fraction of coke. Furthermore, after dissolving the zeolite framework by HF, we found that coke formed during the MDA reaction inside the zeolite pores is essentially a zeolite-templated carbon material. The possibility of preparing zeolite-templated carbons from the most available hydrocarbon feedstock is important for the development of these interesting materials.

3.
Angew Chem Int Ed Engl ; 57(4): 1016-1020, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29181863

ABSTRACT

Non-oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite-based Mo/ZSM-5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM-5 are partially reduced single-atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.

4.
J Am Chem Soc ; 138(31): 10026-31, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27452683

ABSTRACT

In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...