Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 479(11): 1221-1235, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35695514

ABSTRACT

To meet the demand for energy and biomass, T lymphocytes (T cells) activated to proliferation and clonal expansion, require uptake and metabolism of glucose (Gluc) and the amino acid (AA) glutamine (Gln). Whereas exogenous Gln is converted to glutamate (Glu) by glutaminase (GLS), Gln is also synthesized from the endogenous pool of AA through Glu and activity of glutamine synthase (GS). Most of this knowledge comes from studies on cell cultures under ambient oxygen conditions (normoxia, 21% O2). However, in vivo, antigen induced T-cell activation often occurs under moderately hypoxic (1-4% O2) conditions and at various levels of exogenous nutrients. Here, CD4+ T cells were stimulated for 72 h with antibodies targeting the CD3 and CD28 markers at normoxia and hypoxia (1% O2). This was done in the presence and absence of the GLS and GS inhibitors, Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) and methionine sulfoximine (MSO) and at various combinations of exogenous Gluc, Gln and pyruvate (Pyr) for the last 12 h of stimulation. We found that T-cell proliferation, viability and levels of endogenous AA were significantly influenced by the availability of exogenous Gln, Gluc and Pyr as well as inhibition of GLS and GS. Moreover, inhibition of GLS and GS and levels of oxygen differentially influenced oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Finally, BPTES-dependent down-regulation of ECAR was associated with reduced hexokinase (HK) activity at both normoxia and hypoxia. Our results demonstrate that Gln availability and metabolism is rate-limiting for CD4+ T-cell activity.


Subject(s)
CD28 Antigens , Glutamine , Amino Acids , CD3 Complex/immunology , CD4-Positive T-Lymphocytes , Cell Proliferation , Glucose/metabolism , Glutamic Acid , Glutaminase/metabolism , Glutamine/metabolism , Humans , Hypoxia , Oxygen , Pyruvic Acid
2.
Scand J Immunol ; 92(5): e12956, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32767795

ABSTRACT

In a healthy person, metabolically quiescent T lymphocytes (T cells) circulate between lymph nodes and peripheral tissues in search of antigens. Upon infection, some T cells will encounter cognate antigens followed by proliferation and clonal expansion in a context-dependent manner, to become effector T cells. These events are accompanied by changes in cellular metabolism, known as metabolic reprogramming. The magnitude and variation of metabolic reprogramming are, in addition to antigens, dependent on factors such as nutrients and oxygen to ensure host survival during various diseases. Herein, we describe how metabolic programmes define T cell subset identity and effector functions. In addition, we will discuss how metabolic programs can be modulated and affect T cell activity in health and disease using cancer and autoimmunity as examples.


Subject(s)
Autoimmunity/immunology , Energy Metabolism/immunology , Lymphocyte Activation/immunology , Neoplasms/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Animals , Cellular Microenvironment/immunology , Humans , Models, Immunological , Neoplasms/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...