Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Proc Biol Sci ; 291(2023): 20240454, 2024 May.
Article in English | MEDLINE | ID: mdl-38807519

ABSTRACT

Challenges imposed by geographical barriers during migration are selective agents for animals. Juvenile soaring landbirds often cross large water bodies along their migratory path, where they lack updraft support and are vulnerable to harsh weather. However, the consequences of inexperience in accomplishing these water crossings remain largely unquantified. To address this knowledge gap, we tracked the movements of juvenile and adult black kites Milvus migrans over the Strait of Gibraltar using high-frequency tracking devices in variable crosswind conditions. We found that juveniles crossed under higher crosswind speeds and at wider sections of the strait compared with adults during easterly winds, which represent a high risk owing to their high speed and steady direction towards the Atlantic Ocean. Juveniles also drifted extensively with easterly winds, contrasting with adults who strongly compensated for lateral displacement through flapping. Age differences were inconspicuous during winds with a west crosswind speed component, as well as for airspeed modulation in all wind conditions. We suggest that the suboptimal sea-crossing behaviour of juvenile black kites may impact their survival rates, either by increasing chances of drowning owing to exhaustion or by depleting critical energy reserves needed to accomplish their first migration.


Subject(s)
Animal Migration , Wind , Animals , Age Factors , Falconiformes/physiology , Flight, Animal , Atlantic Ocean
2.
Proc Natl Acad Sci U S A ; 121(12): e2306389121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437530

ABSTRACT

How animals refine migratory behavior over their lifetime (i.e., the ontogeny of migration) is an enduring question with important implications for predicting the adaptive capacity of migrants in a changing world. Yet, our inability to monitor the movements of individuals from early life onward has limited our understanding of the ontogeny of migration. The exploration-refinement hypothesis posits that learning shapes the ontogeny of migration in long-lived species, resulting in greater exploratory behavior early in life followed by more rapid and direct movement during later life. We test the exploration-refinement hypothesis by examining how white storks (Ciconia ciconia) balance energy, time, and information as they develop and refine migratory behavior during the first years of life. Here, we show that young birds reduce energy expenditure during flight while also increasing information gain by exploring new places during migration. As the birds age and gain more experience, older individuals stop exploring new places and instead move more quickly and directly, resulting in greater energy expenditure during migratory flight. During spring migration, individuals innovated novel shortcuts during the transition from early life into adulthood, suggesting a reliance on spatial memory acquired through learning. These incremental refinements in migratory behavior provide support for the importance of individual learning within a lifetime in the ontogeny of long-distance migration.


Subject(s)
Energy Metabolism , Exploratory Behavior , Humans , Animals , Movement , Seasons , Spatial Memory
3.
J R Soc Interface ; 21(212): 20230591, 2024 03.
Article in English | MEDLINE | ID: mdl-38503340

ABSTRACT

Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals.


Subject(s)
Columbidae , Stroke , Animals , Columbidae/physiology , Biomechanical Phenomena , Flight, Animal/physiology , Wind , Wings, Animal/physiology
4.
Biol Lett ; 19(11): 20230358, 2023 11.
Article in English | MEDLINE | ID: mdl-37964576

ABSTRACT

Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.


Subject(s)
Chiroptera , Viruses , Animals , Humans , Disease Reservoirs , Africa
5.
Sci Adv ; 9(35): eadf8068, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656798

ABSTRACT

The SMART-BARN (scalable multimodal arena for real-time tracking behavior of animals in large numbers) achieves fast, robust acquisition of movement, behavior, communication, and interactions of animals in groups, within a large (14.7 meters by 6.6 meters by 3.8 meters), three-dimensional environment using multiple information channels. Behavior is measured from a wide range of taxa (insects, birds, mammals, etc.) and body size (from moths to humans) simultaneously. This system integrates multiple, concurrent measurement techniques including submillimeter precision and high-speed (300 hertz) motion capture, acoustic recording and localization, automated behavioral recognition (computer vision), and remote computer-controlled interactive units (e.g., automated feeders and animal-borne devices). The data streams are available in real time allowing highly controlled and behavior-dependent closed-loop experiments, while producing comprehensive datasets for offline analysis. The diverse capabilities of SMART-BARN are demonstrated through three challenging avian case studies, while highlighting its broad applicability to the fine-scale analysis of collective animal behavior across species.


Subject(s)
Behavior, Animal , Movement , Humans , Animals , Mammals
6.
Proc Biol Sci ; 290(2005): 20231396, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37644835

ABSTRACT

Infectious wildlife diseases that circulate at the interface with domestic animals pose significant threats worldwide and require early detection and warning. Although animal tracking technologies are used to discern behavioural changes, they are rarely used to monitor wildlife diseases. Common disease-induced behavioural changes include reduced activity and lethargy ('sickness behaviour'). Here, we investigated whether accelerometer sensors could detect the onset of African swine fever (ASF), a viral infection that induces high mortality in suids for which no vaccine is currently available. Taking advantage of an experiment designed to test an oral ASF vaccine, we equipped 12 wild boars with an accelerometer tag and quantified how ASF affects their activity pattern and behavioural fingerprint, using overall dynamic body acceleration. Wild boars showed a daily reduction in activity of 10-20% from the healthy to the viremia phase. Using change point statistics and comparing healthy individuals living in semi-free and free-ranging conditions, we show how the onset of disease-induced sickness can be detected and how such early detection could work in natural settings. Timely detection of infection in animals is crucial for disease surveillance and control, and accelerometer technology on sentinel animals provides a viable complementary tool to existing disease management approaches.


Subject(s)
African Swine Fever , Sus scrofa , Swine , Animals , African Swine Fever/diagnosis , Acceleration , Animals, Domestic , Animals, Wild , Accelerometry/veterinary
7.
Mov Ecol ; 11(1): 39, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415232

ABSTRACT

BACKGROUND: Bio-logging devices play a fundamental and indispensable role in movement ecology studies, particularly in the wild. However, researchers are aware of the influence that attaching devices can have on animals, particularly on their behaviour, energy expenditure and survival. The way a device is attached to an animal's body has also potential consequences for the collected data, and quantifying the type and magnitude of such potential effects is fundamental to enable researchers to combine and compare data from different studies, as much as it is to improve animal welfare. For over two decades, large terrestrial birds have been in the focus of long-term movement ecology research, employing bio-logging devices attached with different types of harnesses. However, comparative studies investigating the effects of different harness types used on these species are scarce. METHODS: In this study, we tested for potential differences in data collected by two commonly used harness types, backpack and leg-loop, on the flight performance of 10 individuals from five soaring raptor species, equipped with high resolution bio-logging devices, in the same area and time. We explored the effect of harness type on vertical speed, airspeed, glide ratio, height above sea level, distance travelled, proportion of soaring and flapping behaviour, and VeDBA (a proxy for energy expenditure) between and within individuals, all used as fine-scale measures of flight performance. RESULTS: Birds equipped with leg-loops climbed up to 0.36 ms[Formula: see text] faster, reached 25.9% greater altitudes while soaring and spent less time in active flight compared to birds equipped with backpacks, suggesting that backpack harnesses, compared to leg-loops, might cause additional drag affecting the birds' flight performance. A lower VeDBA, a lower rate of sinking while gliding and slightly higher glide ratio and airspeeds were also indicative of less drag using leg-loops, even though the effect on these parameters was comparable to inter-individual differences. CONCLUSIONS: Our results add to the existing literature highlighting the design-related advantages of leg-loops, and support the use of leg-loops as a better alternative to backpack harnesses for large soaring birds, when possible. Our study also highlights how apparently small changes in device attachment can lead to notable improvements in tagging practice, with implications for animal welfare, data interpretation and comparability.

8.
Trends Ecol Evol ; 38(9): 859-869, 2023 09.
Article in English | MEDLINE | ID: mdl-37263824

ABSTRACT

One of the biggest trends in ecology over the past decade has been the creation of standardized databases. Recently, this has included live data, formal linkages between disparate databases, and automated analytics, a synergy that we recognize as the Internet of Animals (IoA). Early IoA systems relate animal locations to remote-sensing data to predict species distributions and detect disease outbreaks, and use live data to inform management of endangered species. However, meeting the future potential of the IoA concept will require solving challenges of taxonomy, data security, and data sharing. By linking data sets, integrating live data, and automating workflows, the IoA has the potential to enable discoveries and predictions relevant to human societies and the conservation of animals.


Subject(s)
Ecology , Internet , Animals , Humans
9.
PLoS One ; 18(5): e0285930, 2023.
Article in English | MEDLINE | ID: mdl-37196042

ABSTRACT

Wildlife tracking devices are key in obtaining detailed insights on movement, animal migration, natal dispersal, home-ranges, resource use and group dynamics of free-roaming animals. Despite a wide use of such devices, tracking for entire lifetimes is still a considerable challenge for most animals, mainly due to technological limitations. Deploying battery powered wildlife tags on smaller animals is limited by the mass of the devices. Micro-sized devices with solar panels sometimes solve this challenge, however, nocturnal species or animals living under low light conditions render solar cells all but useless. For larger animals, where battery weight can be higher, battery longevity becomes the main challenge. Several studies have proposed solutions to these limitations, including harvesting thermal and kinetic energy on animals. However, these concepts are limited by size and weight. In this study, we used a small, lightweight kinetic energy harvesting unit as the power source for a custom wildlife tracking device to investigate its suitability for lifetime animal tracking. We integrated a Kinetron MSG32 microgenerator and a state-of-the-art lithium-ion capacitor (LIC) into a custom GPS-enabled tracking device that is capable of remotely transmitting data via the Sigfox 'Internet of Things' network. Prototypes were tested on domestic dog (n = 4), wild-roaming Exmoor pony (n = 1) and wisent (n = 1). One of the domestic dogs generated up to 10.04 joules of energy in a day, while the Exmoor pony and wisent generated on average 0.69 joules and 2.38 joules per day, respectively. Our results show a significant difference in energy generation between animal species and mounting method, but also highlight the potential for this technology to be a meaningful advancement in ecological research requiring lifetime tracking of animals. The design of the Kinefox is provided open source.


Subject(s)
Animals, Wild , Electric Power Supplies , Animals , Dogs , Horses , Movement , Sunlight
10.
Mov Ecol ; 11(1): 18, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36978169

ABSTRACT

BACKGROUND: Connections between habitats are key to a full understanding of anthropic impacts on ecosystems. Freshwater habitats are especially biodiverse, yet depend on exchange with terrestrial habitats. White storks (Ciconia ciconia) are widespread opportunists that often forage in landfills and then visit wetlands, among other habitats. It is well known that white storks ingest contaminants at landfills (such as plastics and antibiotic resistant bacteria), which can be then deposited in other habitats through their faeces and regurgitated pellets. METHODS: We characterized the role of white storks in habitat connectivity by analyzing GPS data from populations breeding in Germany and wintering from Spain to Morocco. We overlaid GPS tracks on a land-use surface to construct a spatially-explicit network in which nodes were sites, and links were direct flights. We then calculated centrality metrics, identified spatial modules, and quantified overall connections between habitat types. For regional networks in southern Spain and northern Morocco, we built Exponential Random Graph Models (ERGMs) to explain network topologies as a response to node habitat. RESULTS: For Spain and Morocco combined, we built a directed spatial network with 114 nodes and 370 valued links. Landfills were the habitat type most connected to others, as measured by direct flights. The relevance of landfills was confirmed in both ERGMs, with significant positive effects of this habitat as a source of flights. In the ERGM for southern Spain, we found significant positive effects of rice fields and salines (solar saltworks) as sinks for flights. By contrast, in the ERGM for northern Morocco, we found a significant positive effect of marshes as a sink for flights. CONCLUSIONS: These results illustrate how white storks connect landfills with terrestrial and aquatic habitats, some of which are managed for food production. We identified specific interconnected habitat patches across Spain and Morocco that could be used for further studies on biovectoring of pollutants, pathogens and other propagules.

11.
Curr Biol ; 33(6): 1179-1184.e3, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36827987

ABSTRACT

Storms can cause widespread seabird stranding and wrecking,1,2,3,4,5 yet little is known about the maximum wind speeds that birds are able to tolerate or the conditions they avoid. We analyzed >300,000 h of tracking data from 18 seabird species, including flapping and soaring fliers, to assess how flight morphology affects wind selectivity, both at fine scales (hourly movement steps) and across the breeding season. We found no general preference or avoidance of particular wind speeds within foraging tracks. This suggests seabird flight morphology is adapted to a "wind niche," with higher wing loading being selected in windier environments. In support of this, wing loading was positively related to the median wind speeds on the breeding grounds, as well as the maximum wind speeds in which birds flew. Yet globally, the highest wind speeds occur in the tropics (in association with tropical cyclones) where birds are morphologically adapted to low median wind speeds. Tropical species must therefore show behavioral responses to extreme winds, including long-range avoidance of wind speeds that can be twice their operable maxima. By contrast, Procellariiformes flew in almost all wind speeds they encountered at a seasonal scale. Despite this, we describe a small number of cases where albatrosses avoided strong winds at close range, including by flying into the eye of the storm. Extreme winds appear to pose context-dependent risks to seabirds, and more information is needed on the factors that determine the hierarchy of risk, given the impact of global change on storm intensity.6,7.


Subject(s)
Flight, Animal , Wind , Animals , Flight, Animal/physiology , Birds/physiology , Adaptation, Physiological , Feeding Behavior/physiology
12.
Anim Biotelemetry ; 11(1): 13, 2023.
Article in English | MEDLINE | ID: mdl-38800509

ABSTRACT

Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The field has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g., GPS, accelerometers, etc.). However, retrieving data from tags on free-ranging animals remains a challenge since satellite and GSM networks are relatively expensive and or power hungry. Recently a new class of low-power communication networks have been developed and deployed worldwide to connect the internet of things (IoT). Here, we evaluated one of these, the Sigfox IoT network, for the potential as a real-time multi-sensor data retrieval and tag commanding system for studying fauna across a diversity of species and ecosystems. We tracked 312 individuals across 30 species (from 25 g bats to 3 t elephants) with seven different device concepts, resulting in more than 177,742 successful transmissions. We found a maximum line of sight communication distance of 280 km (on a flying cape vulture [Gyps coprotheres]), which sets a new documented record for animal-borne digital data transmission using terrestrial infrastructure. The average transmission success rate amounted to 68.3% (SD 22.1) on flying species and 54.1% (SD 27.4) on terrestrial species. In addition to GPS data, we also collected and transmitted data products from accelerometers, barometers, and thermometers. Further, we assessed the performance of Sigfox Atlas Native, a low-power method for positional estimates based on radio signal strengths and found a median accuracy of 12.89 km (MAD 5.17) on animals. We found that robust real-time communication (median message delay of 1.49 s), the extremely small size of the tags (starting at 1.28 g without GPS), and the low power demands (as low as 5.8 µAh per transmitted byte) unlock new possibilities for ecological data collection and global animal observation.

13.
J R Soc Interface ; 19(196): 20220577, 2022 11.
Article in English | MEDLINE | ID: mdl-36349445

ABSTRACT

All animals that operate within the atmospheric boundary layer need to respond to aerial turbulence. Yet little is known about how flying animals do this because evaluating turbulence at fine scales (tens to approx. 300 m) is exceedingly difficult. Recently, data from animal-borne sensors have been used to assess wind and updraft strength, providing a new possibility for sensing the physical environment. We tested whether highly resolved changes in altitude and body acceleration measured onboard solo-flying pigeons (as model flapping fliers) can be used as qualitative proxies for turbulence. A range of pressure and acceleration proxies performed well when tested against independent turbulence measurements from a tri-axial anemometer mounted onboard an ultralight flying the same route, with stronger turbulence causing increasing vertical displacement. The best proxy for turbulence also varied with estimates of both convective velocity and wind shear. The approximately linear relationship between most proxies and turbulence levels suggests this approach should be widely applicable, providing insight into how turbulence changes in space and time. Furthermore, pigeons were able to fly in levels of turbulence that were unsafe for the ultralight, paving the way for the study of how freestream turbulence affects the costs and kinematics of animal flight.


Subject(s)
Flight, Animal , Wind , Animals , Biomechanical Phenomena , Columbidae
14.
PeerJ ; 10: e14159, 2022.
Article in English | MEDLINE | ID: mdl-36248718

ABSTRACT

Wildlife alter their behaviors in a trade-off between consuming food and fear of becoming food themselves. The risk allocation hypothesis posits that variation in the scale, intensity and longevity of predation threats can influence the magnitude of antipredator behavioral responses. Hunting by humans represents a threat thought to be perceived by wildlife similar to how they perceive a top predator, although hunting intensity and duration varys widely around the world. Here we evaluate the effects of hunting pressure on wildlife by comparing how two communities of mammals under different management schemes differ in their relative abundance and response to humans. Using camera traps to survey wildlife across disturbance levels (yards, farms, forests) in similar landscapes in southern Germany and southeastern USA, we tested the prediction of the risk allocation hypothesis: that the higher intensity and longevity of hunting in Germany (year round vs 3 months, 4x higher harvest/km2/year) would reduce relative abundance of hunted species and result in a larger fear-based response to humans (i.e., more spatial and temporal avoidance). We further evaluated how changes in animal abundance and behavior would result in potential changes to ecological impacts (i.e., herbivory and predation). We found that hunted species were relatively less abundant in Germany and less associated with humans on the landscape (i.e., yards and urban areas), but did not avoid humans temporally in hunted areas while hunted species in the USA showed the opposite pattern. These results are consistent with the risk allocation hypothesis where we would expect more spatial avoidance in response to threats of longer duration (i.e., year-round hunting in Germany vs. 3-month duration in USA) and less spatial avoidance but more temporal avoidance for threats of shorter duration. The expected ecological impacts of mammals in all three habitats were quite different between countries, most strikingly due to the decreases in the relative abundance of hunted species in Germany, particularly deer, with no proportional increase in unhunted species, resulting in American yards facing the potential for 25x more herbivory than German yards. Our results suggest that the duration and intensity of managed hunting can have strong and predictable effects on animal abundance and behavior, with the potential for corresponding changes in the ecological impacts of wildlife. Hunting can be an effective tool for reducing wildlife conflict due to overabundance but may require more intensive harvest than is seen in much of North America.


Subject(s)
Animals, Wild , Deer , Animals , Humans , Hunting , Ecosystem , Forests
15.
Curr Biol ; 32(20): R1187-R1199, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36283388

ABSTRACT

Bird migrations are impressive behavioral phenomena, representing complex spatiotemporal strategies to balance costs of living while maximizing fitness. The field of bird migration research has made great strides over the past decades, yet fundamental gaps remain. Technologies have sparked a transformation in the study of bird migration research by revealing remarkable insights into the underlying behavioral, cognitive, physiological and evolutionary mechanisms of these diverse journeys. Here, we aim to encourage broad discussions and promote future studies by highlighting research fields that are characterized by major knowledge gaps or conflicting evidence, namely the fields of navigation, social learning, individual development, energetics and conservation. We approach each topic by summarizing the current state of knowledge and provide a future outlook of ideas and state-of-the-art methods to further advance the field. Integrating knowledge across these disciplines will allow us to understand the adaptive abilities of different species and to develop effective conservation strategies in a rapidly changing world.


Subject(s)
Biological Evolution , Birds , Animals , Birds/physiology , Animal Migration/physiology
16.
iScience ; 25(9): 104878, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36060068

ABSTRACT

Quantifying stress and energetic responses in animals are major challenges, as existing methods lack temporal resolution and elevate animal stress. We propose "wake respirometry," a new method of quantifying fine-scale changes in CO2 production in unrestrained animals, using a nondispersive infrared CO2 sensor positioned downwind of the animal, i.e., in its wake. We parameterize the dispersion of CO2 in wakes using known CO2 flow rates and wind speeds. Tests with three bird species in a wind tunnel demonstrated that the system can resolve breath-by-breath changes in CO2 concentration, with clear exhalation signatures increasing in period and integral with body size. Changes in physiological state were detectable following handling, flight, and exposure to a perceived threat. We discuss the potential of wake respirometry to quantify stress and respiratory patterns in wild animals and provide suggestions for estimating behavior-specific metabolic rates via full integration of CO2 production across the wake.

17.
Sensors (Basel) ; 22(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080787

ABSTRACT

The ICARUS (International Cooperation for Animal Research Using Space) satellite IoT system was launched in 2020 to observe the life of animals on Earth: their migratory routes, living conditions, and causes of death. These findings will aid species conservation, protect ecosystem services by animals, measure weather and climate, and help forecast the spread of infectious zoonotic diseases and possibly natural disasters. The aim of this article is to explain the system design of ICARUS. Essential components are 'wearables for wildlife', miniature on-animal sensors, quantifying the health of animals and the surrounding environment on the move, and transmitting artificially intelligent summaries of these data globally. We introduce a new class of Internet-of-things (IoT) waveforms-the random-access, very-low-power, wide-area networks (RA-vLPWANs) which enable uncoordinated multiple access at very-low-signal power and low-signal-to-noise ratios. RA-vLPWANs used in ICARUS solve the problems hampering conventional low-power wide area network (LPWAN) IoT systems when applied to space communications. Prominent LPWANs are LoRA, SigFox, MIOTY, ESSA, NB-IoT (5G), or SCADA. Hardware and antenna aspects in the ground and the space segment are given to explain practical system constraints.


Subject(s)
Ecosystem , Animals
18.
Methods Ecol Evol ; 13(4): 813-825, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35910299

ABSTRACT

Accelerometers in animal-attached tags are powerful tools in behavioural ecology, they can be used to determine behaviour and provide proxies for movement-based energy expenditure. Researchers are collecting and archiving data across systems, seasons and device types. However, using data repositories to draw ecological inference requires a good understanding of the error introduced according to sensor type and position on the study animal and protocols for error assessment and minimisation.Using laboratory trials, we examine the absolute accuracy of tri-axial accelerometers and determine how inaccuracies impact measurements of dynamic body acceleration (DBA), a proxy for energy expenditure, in human participants. We then examine how tag type and placement affect the acceleration signal in birds, using pigeons Columba livia flying in a wind tunnel, with tags mounted simultaneously in two positions, and back- and tail-mounted tags deployed on wild kittiwakes Rissa tridactyla. Finally, we present a case study where two generations of tag were deployed using different attachment procedures on red-tailed tropicbirds Phaethon rubricauda foraging in different seasons.Bench tests showed that individual acceleration axes required a two-level correction to eliminate measurement error. This resulted in DBA differences of up to 5% between calibrated and uncalibrated tags for humans walking at a range of speeds. Device position was associated with greater variation in DBA, with upper and lower back-mounted tags varying by 9% in pigeons, and tail- and back-mounted tags varying by 13% in kittiwakes. The tropicbird study highlighted the difficulties of attributing changes in signal amplitude to a single factor when confounding influences tend to covary, as DBA varied by 25% between seasons.Accelerometer accuracy, tag placement and attachment critically affect the signal amplitude and thereby the ability of the system to detect biologically meaningful phenomena. We propose a simple method to calibrate accelerometers that can be executed under field conditions. This should be used prior to deployments and archived with resulting data. We also suggest a way that researchers can assess accuracy in previously collected data, and caution that variable tag placement and attachment can increase sensor noise and even generate trends that have no biological meaning.

19.
J R Soc Interface ; 19(193): 20220168, 2022 08.
Article in English | MEDLINE | ID: mdl-36000229

ABSTRACT

Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.


Subject(s)
Flight, Animal , Wings, Animal , Animals , Biomechanical Phenomena , Birds
20.
Science ; 377(6607): 764-768, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35951704

ABSTRACT

Each year, trillions of insects make long-range seasonal migrations. These movements are relatively well understood at a population level, but how individual insects achieve them remains elusive. Behavioral responses to conditions en route are little studied, primarily owing to the challenges of tracking individual insects. Using a light aircraft and individual radio tracking, we show that nocturnally migrating death's-head hawkmoths maintain control of their flight trajectories over long distances. The moths did not just fly with favorable tailwinds; during a given night, they also adjusted for head and crosswinds to precisely hold course. This behavior indicates that the moths use a sophisticated internal compass to maintain seasonally beneficial migratory trajectories independent of wind conditions, illuminating how insects traverse long distances to take advantage of seasonal resources.


Subject(s)
Animal Migration , Flight, Animal , Moths , Animals , Flight, Animal/physiology , Insecta , Moths/physiology , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...