Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 22(9): 103-112, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34258853

ABSTRACT

Patient breathing during lung cancer radiotherapy reduces the ability to keep a sharp dose gradient between tumor and normal tissues. To mitigate detrimental effects, accurate information about the tumor position is required. In this work, we evaluate the errors in modeled tumor positions over several fractions of a simple tumor motion model driven by a surface surrogate measure and its time derivative. The model is tested with respect to four different surface surrogates and a varying number of surrogate and image acquisitions used for model training. Fourteen patients were imaged 100 times with cine CT, at three sessions mimicking a planning session followed by two treatment fractions. Patient body contours were concurrently detected by a body surface laser scanning system BSLS from which four surface surrogates were extracted; thoracic point TP, abdominal point AP, the radial distance mean RDM, and a surface derived volume SDV. The motion model was trained on session 1 and evaluated on sessions 2 and 3 by comparing modeled tumor positions with measured positions from the cine images. The number of concurrent surrogate and image acquisitions used in the training set was varied, and its impact on the final result was evaluated. The use of AP as a surface surrogate yielded the smallest error in modeled tumor positions. The mean deviation between modeled and measured tumor positions was 1.9 mm. The corresponding deviations for using the other surrogates were 2.0 mm (RDM), 2.8 mm (SDV), and 3.0 mm (TP). To produce a motion model that accurately models the tumor position over several fractions requires at least 10 simultaneous surrogate and image acquisitions over 1-2 minutes.


Subject(s)
Lung Neoplasms , Radiosurgery , Four-Dimensional Computed Tomography , Humans , Lung , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Movement , Radiotherapy Planning, Computer-Assisted , Respiration
2.
Med Phys ; 48(5): 2136-2144, 2021 May.
Article in English | MEDLINE | ID: mdl-33668075

ABSTRACT

PURPOSE: Irregular breathing may compromise the treated volume for free-breathing lung cancer patients during radiotherapy. We try to find a measure based on a breathing amplitude surrogate that can be used to select the patients who need further investigation of tumor motion to ensure that the internal target volume (ITV) provides reliant coverage of the tumor. MATERIAL AND METHODS: Fourteen patients were scanned with four-dimensional computed tomography (4DCT) during free-breathing. The breathing motion was detected by a pneumatic bellows device used as a breathing amplitude surrogate. In addition to the 4DCT, a breath-hold (BH) scan and three cine CT imaging sessions were acquired. The cine images were taken at randomized intervals at a rate of 12 per minute for 8 minutes to allow tumor motion determination during a typical hypo-fractionated treatment scenario. A clinical target volume (CTV) was segmented in the BH CT and propagated over all cine images and 4DCT bins. The center-of-volume of the translated CTV (CTVCOV ) in the ten 4DCT bins were interconnected to define the 4DCT determined tumor trajectory (4DCT-TT). The volume of CTV inside ITV for all cine CTs was calculated and reported at the 10th percentile (VCTV10% ). The deviations between CTVCOV in the cine CTs and the 4DCT-TT were calculated and reported at its 90th percentile (d90% ). The standard deviation of the bellows amplitude peaks (SDP) and the ratio between large and normal inspirations, κrel , were tested as surrogates for VCTV10% and d90% . RESULTS: The values of d90% ranged from 0.6 to 5.2 mm with a mean of 2.2 mm. The values of VCTV10% ranged from 59-93% with a mean of 78 %. The SDP had a moderate correlation (r = 0.87) to d90% . Less correlation was seen between SDP and VCTV10% (r = 0.77), κrel and d90% (r = 0.75) and finally κrel and VCTV10% (r = 0.75). CONCLUSIONS: The ITV coverage had a large variation for some patients. SDP seems to be a feasible surrogate measure to select patients that needs further tumor motion determination.


Subject(s)
Lung Neoplasms , Radiotherapy Planning, Computer-Assisted , Four-Dimensional Computed Tomography , Humans , Lung , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...