Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Environ Toxicol Chem ; 43(1): 115-131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018867

ABSTRACT

A prior multigenerational perfluorooctane sulfonic acid (PFOS) exposure investigation in zebrafish reported adverse effects at 0.734 µg/L, among the lowest aquatic effect levels for PFOS reported to date. The present three-generation PFOS exposure quantified survival, growth, reproduction, and vitellogenin (VTG; egg yolk protein) responses in zebrafish, incorporating experimental design and procedural improvements relative to the earlier study. Exposures targeting 0.1, 0.6, 3.2, 20, and 100 µg/L in parental (P) and first filial (F1) generations lasted for 180 days post fertilization (dpf) and the second filial generation (F2) through 16 dpf. Survival decreased significantly in P and F2 generation exposures, but not in F1, at the highest PFOS treatment (100 µg/L nominal, 94-205 µg/L, measured). Significant adverse effects on body weight and length were infrequent, of low magnitude, and occurred predominantly at the highest exposure treatment. Finally, PFOS had no significant effects on P or F1 egg production and survival or whole-body VTG levels in P or F1 male fish. Overall, the predominance and magnitude of adverse PFOS effects at <1 µg/L reported in prior research were largely nonrepeatable in the present study. In contrast, the present study indicated a threshold for ecologically relevant adverse effects in zebrafish at 117 µg/L (SE 8 µg/L, n = 10) for survival and 47 µg/L (SE 11 µg/L, n = 19) for all statistically significant negative effects observed. Environ Toxicol Chem 2024;43:115-131. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Animals , Male , Zebrafish/metabolism , Reproduction , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/metabolism , Fluorocarbons/toxicity , Fluorocarbons/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
2.
Toxics ; 9(1)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435144

ABSTRACT

Solvent Violet 47 (SV47) and Disperse Blue 14 (DB14) are two anthraquinone dyes that were previously used in different formulations for the production of violet-colored smoke. Both dyes have shown potential for toxicity; however, there is no comprehensive understanding of their effects. Zebrafish embryos were exposed to SV47 or DB14 from 6 to 120 h post fertilization (hpf) to assess the dyes' potential adverse effects on developing embryos. The potential ability of both dyes to cross the blood-brain barrier was also assessed. At concentrations between 0.55 and 5.23 mg/L, SV47 showed a dose-dependent increase in mortality, jaw malformation, axis curvature, and edemas. At concentrations between 0.15 and 7.54 mg/L, DB14 did not have this same dose-dependence but had similar morphological outcomes at the highest doses. Nevertheless, while SV47 showed significant mortality from 4.20 mg/L, there was no significant mortality on embryos exposed to DB14. Regardless, decreased locomotor movement was observed at all concentrations of DB14, suggesting an adverse neurodevelopmental effect. Overall, our results showed that at similar concentrations, SV47 and DB14 caused different types of phenotypic effects in zebrafish embryos.

3.
Environ Toxicol Chem ; 40(3): 780-791, 2021 03.
Article in English | MEDLINE | ID: mdl-33044770

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is a perfluorinated compound used in many industrial and consumer products. It has been linked to a broad range of adverse effects in several species, including zebrafish (Danio rerio). The zebrafish embryo is a widely used vertebrate model to elucidate potential adverse effects of chemicals because it is amenable to medium and high throughput. However, there is limited research on the full extent of the impact the chorion has on those effects. Results from the present study indicate that the presence of the chorion affected the timing and incidence of mortality as well as morphometric endpoints such as spinal curvature and swim bladder inflation in zebrafish embryos exposed to PFOS. Furthermore, removal of the chorion prior to exposure resulted in a lower threshold of sensitivity to PFOS for effects on transcriptional expression within the peroxisome proliferator-activated receptor (PPAR) nuclear signaling pathway. Perturbation of PPAR pathway gene expression can result in disruption of metabolic signaling and regulation, which can adversely affect development, energy availability, and survival. It can be concluded that removal of the chorion has significant effects on the timing and incidence of impacts associated with PFOS exposure, and more research is warranted to fully elucidate the protective role of the chorion and the critical timing of these events. Environ Toxicol Chem 2021;40:780-791. Published 2020. This article is a US Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Alkanesulfonic Acids , Water Pollutants, Chemical , Alkanesulfonic Acids/toxicity , Animals , Chorion , Embryo, Nonmammalian , Fluorocarbons , Water Pollutants, Chemical/toxicity , Zebrafish
4.
Mol Ecol ; 28(19): 4422-4438, 2019 10.
Article in English | MEDLINE | ID: mdl-31486145

ABSTRACT

Nearly all animal species have utilized photoperiod to cue seasonal behaviours and life history traits. We investigated photoperiod responses in keystone species, Daphnia magna, to identify molecular processes underlying ecologically important behaviours and traits using functional transcriptomic analyses. Daphnia magna were photoperiod-entrained immediately posthatch to a standard control photoperiod of 16 light/ 8 dark hours (16L:8D) relative to shorter (4L:20D, 8L:16D, 12L:12L) and longer (20L:4D) day length photoperiods. Short-day photoperiods induced significantly increased light-avoidance behaviours relative to controls. Correspondingly, significant differential transcript expression for genes involved in glutamate signalling was observed, a critical signalling pathway in arthropod light-avoidance behaviour. Additionally, period circadian protein and proteins coding F-box/LRR-repeat domains were differentially expressed which are recognized to establish circadian rhythms in arthropods. Indicators of metabolic rate increased in short-day photoperiods which corresponded with broadscale changes in transcriptional expression across system-level energy metabolism pathways. The most striking observations included significantly decreased neonate production at the shortest day length photoperiod (4L:20D) and significantly increased male production across short-day and equinox photoperiods (4L:20D, 8L:16D and 12L:12D). Transcriptional expression consistent with putative mechanisms of male production was observed including photoperiod-dependent expression of transformer-2 sex-determining protein and small nuclear ribonucleoprotein particles (snRNPs) which control splice variant expression for genes like transformer. Finally, increased transcriptional expression of glutamate has also been shown to induce male production in Daphnia pulex via photoperiod-sensitive mechanisms. Overall, photoperiod entrainment affected molecular pathways that underpin critical behavioural and life history traits in D. magna providing fundamental insights into biological responses to this primary environmental cue.


Subject(s)
Behavior, Animal , Circadian Rhythm , Daphnia/genetics , Photoperiod , Animals , Daphnia/physiology , Ecology , Environment , Gene Expression Profiling , Male , Phenotype , Reproduction
5.
Aquat Toxicol ; 213: 105204, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31185427

ABSTRACT

Previous toxicological investigations of the insensitive munition (IM), 3-nitro-1,2,4-triazol-5-one (NTO), demonstrated histopathological and physiological impacts in mammalian testes. The implications of these findings for fish was unknown, therefore we investigated the effects of chronic (21 day) exposures to NTO and an NTO-containing IM formulation called IMX-101 (composed of 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and NTO) in adult male fathead minnows to assess if impacts on testes were conserved. The NTO exposure caused no significant mortality through the maximum exposure concentration (720 mg/L, measured), however NTO elicited testicular impacts causing significant asynchrony in spermatogenesis and necrosis in secondary spermatocytes at the two highest exposure concentrations (383 mg/L and 720 mg/L) and testicular degeneration at the highest exposure. Microarray-based transcriptomics analysis identified significant enrichment of steroid metabolism pathways and mTORC-signal control of spermatogonia differentiation in NTO exposures each having logical connections to observed asynchronous spermatogenesis. Additionally, NTO impaired transcriptional expression for genes supporting sperm structural and flagellar development including sperm-associated antigen 6 (Spag6). These functional transcriptomic responses are hypothesized contributors to impacted reproductive physiology in NTO exposures that ultimately lead to reductions in spermatozoa. In contrast to NTO, the IMX-101 formulation elicited significant mortality at the two highest exposure concentrations of 25.2 and 50.9 mg/L (DNAN nominal + NTO measured + NQ measured). Unlike NTO and NQ, the DNAN component of the IMX-101 formulation underwent significant transformation in the 21d exposure. From previous investigations, neither NTO nor NQ caused mortality in fish at >1000 mg/L suggesting that mortality in the present study arose from DNAN / DNAN-attributable transformation products. The 12.6 mg/L IMX-101 exposure caused significant sublethal impacts on testes including sperm necrosis, interstitial fibrosis, and Sertoli-like cell hyperplasia. Transcriptional profiles for IMX-101 indicated significant enrichment on multiple signaling pathways supporting spermatogenesis, mitosis / meiosis, and flagellar structure, all logically connected to observed sperm necrosis. Additionally, pronounced transcriptional increases within the PPARα-RXRα pathway, a known DNAN target, has been hypothesized to correspond to Sertoli cell hyperplasia, presumably as a compensatory response to fulfill the nurse-function of Sertoli cells during spermatogenesis. Overall, the transcriptional results indicated unique molecular responses for NTO and IMX-101. Regarding chemical hazard, NTO impacted testes and impaired spermatogenesis, but at high exposure concentrations (≥ 192 mg/L), whereas the IMX-101 formulation, elicited mortality and impacts on reproductive physiology likely caused by DNAN and its transformation products present at concentrations well below the NTO-component concentration within the IMX-101 mixture formulation.


Subject(s)
Anisoles/toxicity , Cyprinidae/physiology , Nitro Compounds/toxicity , Testis/physiology , Triazoles/toxicity , Animals , Cyprinidae/genetics , Male , Principal Component Analysis , Reproduction/drug effects , Spermatogenesis , Testis/drug effects , Testis/pathology , Transcriptome/genetics , Water Pollutants, Chemical/toxicity
6.
BMC Genomics ; 19(1): 877, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30518325

ABSTRACT

BACKGROUND: The health and resilience of species in natural environments is increasingly challenged by complex anthropogenic stressor combinations including climate change, habitat encroachment, and chemical contamination. To better understand impacts of these stressors we examined the individual- and combined-stressor impacts of malaria infection, food limitation, and 2,4,6-trinitrotoluene (TNT) exposures on gene expression in livers of Western fence lizards (WFL, Sceloporus occidentalis) using custom WFL transcriptome-based microarrays. RESULTS: Computational analysis including annotation enrichment and correlation analysis identified putative functional mechanisms linking transcript expression and toxicological phenotypes. TNT exposure increased transcript expression for genes involved in erythropoiesis, potentially in response to TNT-induced anemia and/or methemoglobinemia and caused dose-specific effects on genes involved in lipid and overall energy metabolism consistent with a hormesis response of growth stimulation at low doses and adverse decreases in lizard growth at high doses. Functional enrichment results were indicative of inhibited potential for lipid mobilization and catabolism in TNT exposures which corresponded with increased inguinal fat weights and was suggestive of a decreased overall energy budget. Malaria infection elicited enriched expression of multiple immune-related functions likely corresponding to increased white blood cell (WBC) counts. Food limitation alone enriched functions related to cellular energy production and decreased expression of immune responses consistent with a decrease in WBC levels. CONCLUSIONS: Despite these findings, the lizards demonstrated immune resilience to malaria infection under food limitation with transcriptional results indicating a fully competent immune response to malaria, even under bio-energetic constraints. Interestingly, both TNT and malaria individually increased transcriptional expression of immune-related genes and increased overall WBC concentrations in blood; responses that were retained in the TNT x malaria combined exposure. The results demonstrate complex and sometimes unexpected responses to multiple stressors where the lizards displayed remarkable resiliency to the stressor combinations investigated.


Subject(s)
Environmental Pollutants/toxicity , Lizards/metabolism , Transcriptome/drug effects , Animals , Body Weight/drug effects , Climate Change , Cluster Analysis , Ecosystem , Energy Metabolism/drug effects , Erythropoiesis/drug effects , Hemolysis/drug effects , Liver/drug effects , Liver/metabolism , Lizards/genetics , Lizards/parasitology , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Plasmodium/pathogenicity , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA , Spleen/parasitology , Spleen/physiology , Trinitrotoluene/toxicity
7.
BMC Syst Biol ; 12(Suppl 7): 92, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30547801

ABSTRACT

BACKGROUND: Ecotoxicological studies on the insensitive munitions formulation IMX-101 and its components 2,4-dinitroanisole (DNAN), nitroguanidine (NQ) and nitrotriazolone (NTO) in various organisms showed that DNAN was the main contributor to the overall toxicity of IMX-101 and suggested that the three compounds acted independently. These results motivated this toxicogenomics study to discern toxicological mechanisms for these compounds at the molecular level. METHODS: Here we used the soil nematode Caenorhabditis elegans, a well-characterized genomics model, as the test organism and a species-specific, transcriptome-wide 44 K-oligo probe microarray for gene expression analysis. In addition to the control treatment, C. elegans were exposed for 24 h to 6 concentrations of DNAN (1.95-62.5 ppm) or NQ (83-2667 ppm) or 5 concentrations of NTO (187-3000 ppm) with ten replicates per treatment. The nematodes were transferred to a clean environment after exposure. Reproduction endpoints (egg and larvae counts) were measured at three time points (i.e., 24-, 48- and 72-h). Gene expression profiling was performed immediately after 24-h exposure to each chemical at the lowest, medium and highest concentrations plus the control with four replicates per treatment. RESULTS: Statistical analyses indicated that chemical treatment did not significantly affect nematode reproduction but did induce 2175, 378, and 118 differentially expressed genes (DEGs) in NQ-, DNAN-, and NTO-treated nematodes, respectively. Bioinformatic analysis indicated that the three compounds shared both DEGs and DEG-mapped Reactome pathways. Gene set enrichment analysis further demonstrated that DNAN and NTO significantly altered 12 and 6 KEGG pathways, separately, with three pathways in common. NTO mainly affected carbohydrate, amino acid and xenobiotics metabolism while DNAN disrupted protein processing, ABC transporters and several signal transduction pathways. NQ-induced DEGs were mapped to a wide variety of metabolism, cell cycle, immune system and extracellular matrix organization pathways. CONCLUSION: Despite the absence of significant effects on apical reproduction endpoints, DNAN, NTO and NQ caused significant alterations in gene expression and pathways at 1.95 ppm, 187 ppm and 83 ppm, respectively. This study provided supporting evidence that the three chemicals may exert independent toxicity by acting on distinct molecular targets and pathways.


Subject(s)
Anisoles/toxicity , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Guanidines/toxicity , Toxicogenetics , Triazoles/toxicity , Animals , Anisoles/analysis , Anisoles/chemistry , Guanidines/analysis , Oligonucleotide Array Sequence Analysis , Risk Assessment , Transcription, Genetic/drug effects , Transcriptome/drug effects , Triazoles/analysis , Triazoles/chemistry
8.
Chemosphere ; 210: 795-804, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30041157

ABSTRACT

Insensitive munitions (IMs) are replacing conventional munitions, improving safety from unintended detonation. IMs are deployed in mixture formulations but little is known about their mixture toxicology. We characterized mixture effects of the IM formulations IMX-101 (mixture of 2,4-dinitroanisole [DNAN], 3-nitro-1,2,4-triazol-5-one [NTO], and nitroguanidine [NQ]) and IMX-104 (DNAN, NTO, and hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX]) in subchronic (10 d) and chronic (35 d) water-only tests in Hyalella azteca assessing impacts on survival, growth and reproduction. In 10-d single chemical exposures, DNAN was the most potent constituent, eliciting an LC50 of 16.0 mg/L; the LC50s for NTO and NQ were 891 and 565 mg/L, respectively. RDX did not elicit significant mortality up to 29.5 mg/L, a concentration near its solubility limit. Based on toxic-units (TUs), the toxicity of IMX-101 was driven by the effective concentration of DNAN; however, the presence of NTO, RDX, or both elicited interactive effects causing an approximately 2-fold decrease in lethality for IMX-104. Growth reduction was observed in 10-d exposures to DNAN, IMX-101 and IMX-104, but not for NQ, NTO, or RDX. Longer exposure duration (35 d) to IMX-101, IMX-104, and DNAN resulted in 3-6 times higher sensitivity for lethality and resulted in the most sensitive endpoint for DNAN, RDX, and IMX-101 exposures, decreased reproduction. Slight, but statistically significant, antagonistic responses among IMX-101 constituents were observed for survival and reproduction at 35d. Overall, the results support response-additive summation as a sufficient method to provide conservative hazard assessments of subchronic, chronic, and sublethal IMX-101 and IMX-104 mixture impacts in H. azteca.


Subject(s)
Anisoles/toxicity , Environmental Monitoring/methods , Nitro Compounds/toxicity , Animals
9.
Aquat Toxicol ; 199: 138-151, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29625381

ABSTRACT

Within the US military, new insensitive munitions (IMs) are rapidly replacing conventional munitions improving safety from unintended detonation. Toxicity data for IM chemicals are expanding rapidly, however IM constituents are typically deployed in mixture formulations, and very little is known about their mixture toxicology. In the present study we sought to characterize the mixture effects and toxicology of the two predominant IM formulations IMX-101 and IMX-104 in acute (48 h) larval fathead minnow (Pimephales promelas) exposures. IMX-101 consists of a mixture of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ) while IMX-104 is composed of DNAN, NTO, and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). DNAN was the most potent constituent in IMX-101 eliciting an LC50 of 36.1 mg/L, whereas NTO and NQ did not elicit significant mortality in exposures up to 1040 and 2640 mg/L, respectively. Toxic unit calculations indicated that IMX-101 elicited toxicity representative of the component concentration of DNAN within the mixture. Toxicogenomic responses for the individual constituents of IMX-101 indicated unique transcriptional expression and functional responses characteristic of: oxidative stress, impaired energy metabolism, tissue damage and inflammatory responses in DNAN exposures; impaired steroid biosynthesis and developmental cell-signaling in NQ exposures; and altered mitogen-activated protein kinase signaling in NTO exposures. Transcriptional responses to the IMX-101 mixture were driven by the effects of DNAN where expression and functional responses were nearly identical comparing DNAN alone versus the fractional equivalent of DNAN within IMX-101. Given that each individual constituent of the IMX-101 mixture elicited unique functional responses, and NTO and NQ did not interact with DNAN within the IMX-101 mixture exposure, the overall toxicity and toxicogenomic responses within acute exposures to the IMX-101 formulation are indicative of "independent" mixture toxicology. Alternatively, in the IMX-104 exposure both DNAN and RDX were each present at concentrations sufficient to elicit lethality (RDX LC50 = 28.9 mg/L). Toxic-unit calculations for IMX-104 mixture formulation exposures indicated slight synergistic toxicity (ΣTU LC50 = 0.82, 95% confidence interval = 0.73-0.90). Unique functional responses relative to DNAN were observed in the IMX-104 exposure including responses characteristic of RDX exposure. Based on previous transcriptomics responses to acute RDX exposures in fathead minnow larvae, we hypothesize that the potentially synergistic responses within the IMX-104 mixture are related to interactive effects of each DNAN and RDX on oxidative stress mitigation pathways.


Subject(s)
Anisoles/toxicity , Cyprinidae/genetics , Toxicity Tests, Acute , Transcriptome/genetics , Triazines/toxicity , Triazoles/toxicity , Animals , Cyprinidae/metabolism , Environmental Exposure , Genomics , Larva/drug effects , Larva/metabolism , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reference Values , Survival Analysis , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity
10.
Aquat Toxicol ; 190: 228-245, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28763742

ABSTRACT

Insensitive munitions (IMs) improve soldier safety by decreasing sympathetic detonation during training and use in theatre. IMs are being increasingly deployed, although the environmental effects of IM constituents such as nitroguanidine (NQ) and IM mixture formulations such as IMX-101 remain largely unknown. In the present study, we investigated the acute (96h) toxicity of NQ and IMX-101 to zebrafish larvae (21d post-fertilization), both in the parent materials and after the materials had been irradiated with environmentally-relevant levels of ultraviolet (UV) light. The UV-treatment increased the toxicity of NQ by 17-fold (LC50 decreased from 1323mg/L to 77.2mg/L). Similarly, UV-treatment increased the toxicity of IMX-101 by nearly two fold (LC50 decreased from 131.3 to 67.6mg/L). To gain insight into the cause(s) of the observed UV-enhanced toxicity of the IMs, comparative molecular responses to parent and UV-treated IMs were assessed using microarray-based global transcript expression assays. Both gene set enrichment analysis (GSEA) and differential transcript expression analysis coupled with pathway and annotation cluster enrichment were conducted to provide functional interpretations of expression results and hypothetical modes of toxicity. The parent NQ exposure caused significant enrichment of functions related to immune responses and proteasome-mediated protein metabolism occurring primarily at low, sublethal exposure levels (5.5 and 45.6mg/L). Enriched functions in the IMX-101 exposure were indicative of increased xenobiotic metabolism, oxidative stress mitigation, protein degradation, and anti-inflammatory responses, each of which displayed predominantly positive concentration-response relationships. UV-treated NQ had a fundamentally different transcriptomic expression profile relative to parent NQ causing positive concentration-response relationships for genes involved in oxidative-stress mitigation pathways and inhibited expression of multiple cadherins that facilitate zebrafish neurological and retinal development. Transcriptomic profiles were similar between UV-treated versus parent IMX-101 exposures. However, more significant and diverse enrichment as well as greater magnitudes of differential expression for oxidative stress responses were observed in UV-treated IMX-101 exposures. Further, transcriptomics indicated potential for cytokine signaling suppression providing potential connections between oxidative stress and anti-inflammatory responses. Given the overall results, we hypothesize that the increased toxicity of UV-irradiated NQ and the IMX-101 mixture result from breakdown products with elevated potential to elicit oxidative stress.


Subject(s)
Anisoles/toxicity , Guanidines/toxicity , Oxidative Stress/drug effects , Transcriptome/drug effects , Triazoles/toxicity , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Anisoles/radiation effects , Dose-Response Relationship, Drug , Gene Expression Profiling , Guanidines/radiation effects , Larva/drug effects , Larva/metabolism , Nitro Compounds/radiation effects , Nitro Compounds/toxicity , Oxidative Stress/genetics , Triazoles/radiation effects , Water Pollutants, Chemical/radiation effects
11.
Ecotoxicology ; 25(6): 1126-35, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27151402

ABSTRACT

This work investigates whether the scale-up to multi-animal exposures that is commonly applied in genomics studies provides equivalent toxicity outcomes to single-animal experiments of standard Daphnia magna toxicity assays. Specifically, we tested the null hypothesis that intraspecific interactions (ISI) among D. magna have neither effect on the life history strategies of this species, nor impact toxicological outcomes in exposure experiments with Cu and Pb. The results show that ISI significantly increased mortality of D. magna in both Cu and Pb exposure experiments, decreasing 14 day LC50 s and 95 % confidence intervals from 14.5 (10.9-148.3) to 8.4 (8.2-8.7) µg Cu/L and from 232 (156-4810) to 68 (63-73) µg Pb/L. Additionally, ISI potentiated Pb impacts on reproduction eliciting a nearly 10-fold decrease in the no-observed effect concentration (from 236 to 25 µg/L). As an indication of environmental relevance, the effects of ISI on both mortality and reproduction in Pb exposures were sustained at both high and low food rations. Furthermore, even with a single pair of Daphnia, ISI significantly increased (p < 0.05) neonate production in control conditions, demonstrating that ISI can affect life history strategy. Given these results we reject the null hypothesis and conclude that results from scale-up assays cannot be directly applied to observations from single-animal assessments in D. magna. We postulate that D. magna senses chemical signatures of conspecifics which elicits changes in life history strategies that ultimately increase susceptibility to metal toxicity.


Subject(s)
Daphnia/drug effects , Metals/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Daphnia/physiology , Dose-Response Relationship, Drug , Life History Traits
12.
Regul Toxicol Pharmacol ; 75: 46-57, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26724267

ABSTRACT

The adverse outcome pathway (AOP) is a framework to mechanistically link molecular initiating events to adverse biological outcomes. From a regulatory perspective, it is of crucial importance to determine the confidence for the AOP in question as well as the quality of data available in supporting this evaluation. A weight of evidence approach has been proposed for this task, but many of the existing frameworks for weight of evidence evaluation are qualitative and there is not clear guidance regarding how weight of evidence should be calculated for an AOP. In this paper we advocate the use of a subject matter expertise driven approach for weight of evidence evaluation based on criteria and metrics related to data quality and the strength of causal linkages between key events. As a demonstration, we notionally determine weight of evidence scores for two AOPs: Non-competitive ionotropic GABA receptor antagonism leading to epileptic seizures, and Antagonist-binding and stabilization of a co-repressor to the peroxisome proliferator-activated receptor α (PPARα) signaling complex ultimately causing starvation-like weight loss.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Models, Biological , Animals , Emaciation/chemically induced , Epilepsy/chemically induced , GABA Antagonists/adverse effects , Humans , Membrane Transport Modulators/adverse effects , PPAR alpha/antagonists & inhibitors , Risk Assessment , Weight Loss/drug effects
13.
BMC Genomics ; 16: 587, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26251320

ABSTRACT

BACKGROUND: A systems toxicology investigation comparing and integrating transcriptomic and proteomic results was conducted to develop holistic effects characterizations for the wildlife bird model, Northern bobwhite (Colinus virginianus) dosed with the explosives degradation product 2-amino-4,6-dinitrotoluene (2A-DNT). A subchronic 60 d toxicology bioassay was leveraged where both sexes were dosed via daily gavage with 0, 3, 14, or 30 mg/kg-d 2A-DNT. Effects on global transcript expression were investigated in liver and kidney tissue using custom microarrays for C. virginianus in both sexes at all doses, while effects on proteome expression were investigated in liver for both sexes and kidney in males, at 30 mg/kg-d. RESULTS: As expected, transcript expression was not directly indicative of protein expression in response to 2A-DNT. However, a high degree of correspondence was observed among gene and protein expression when investigating higher-order functional responses including statistically enriched gene networks and canonical pathways, especially when connected to toxicological outcomes of 2A-DNT exposure. Analysis of networks statistically enriched for both transcripts and proteins demonstrated common responses including inhibition of programmed cell death and arrest of cell cycle in liver tissues at 2A-DNT doses that caused liver necrosis and death in females. Additionally, both transcript and protein expression in liver tissue was indicative of induced phase I and II xenobiotic metabolism potentially as a mechanism to detoxify and excrete 2A-DNT. Nuclear signaling assays, transcript expression and protein expression each implicated peroxisome proliferator-activated receptor (PPAR) nuclear signaling as a primary molecular target in the 2A-DNT exposure with significant downstream enrichment of PPAR-regulated pathways including lipid metabolic pathways and gluconeogenesis suggesting impaired bioenergetic potential. CONCLUSION: Although the differential expression of transcripts and proteins was largely unique, the consensus of functional pathways and gene networks enriched among transcriptomic and proteomic datasets provided the identification of many critical metabolic functions underlying 2A-DNT toxicity as well as impaired PPAR signaling, a key molecular initiating event known to be affected in di- and trinitrotoluene exposures.


Subject(s)
Aniline Compounds/toxicity , Colinus/metabolism , Liver/drug effects , Animals , Biological Assay/methods , Dose-Response Relationship, Drug , Explosive Agents/toxicity , Female , Kidney/drug effects , Kidney/metabolism , Liver/metabolism , Male , Metabolic Networks and Pathways/drug effects , Proteome/drug effects , Proteome/metabolism , Proteomics/methods
14.
BMC Genomics ; 15: 591, 2014 Jul 12.
Article in English | MEDLINE | ID: mdl-25016412

ABSTRACT

BACKGROUND: Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RESULTS: RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production including glycolysis and electron-transport pathways was observed in the coral animal. CONCLUSIONS: Transcriptional network analysis for central energy metabolism demonstrated highly correlated responses to RDX among the coral animal and zooxanthellae indicative of potential compensatory responses to lost photosynthetic potential within the holobiont. These observations underscore the potential for complex integrated responses to RDX exposure among species comprising the coral holobiont and highlight the need to understand holobiont-species interactions to accurately assess pollutant impacts.


Subject(s)
Anthozoa/genetics , Dinoflagellida/genetics , Transcriptome/drug effects , Triazines/pharmacology , Water Pollutants, Chemical/pharmacology , Animals , Anthozoa/drug effects , Anthozoa/metabolism , Dinoflagellida/drug effects , Dinoflagellida/metabolism , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Stress, Physiological , Symbiosis
15.
Toxicol Sci ; 141(1): 44-58, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24893713

ABSTRACT

2,4-dinitrotoluene (2,4-DNT) is a nitroaromatic used in industrial dyes and explosives manufacturing processes that is found as a contaminant in the environment. Previous studies have implicated antagonism of PPARα signaling as a principal process affected by 2,4-DNT. Here, we test the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, cause organism-level impacts on exercise endurance. PPAR nuclear activation bioassays demonstrated inhibition of PPARα signaling by 2,4-DNT whereas PPARγ signaling increased. PPARα (-/-) and wild-type (WT) female mice were exposed for 14 days to vehicle or 2,4-DNT (134 mg/kg/day) and performed a forced swim to exhaustion 1 day after the last dose. 2,4-DNT significantly decreased body weights and swim times in WTs, but effects were significantly mitigated in PPARα (-/-) mice. 2,4-DNT decreased transcript expression for genes downstream in the PPARα signaling pathway, principally genes involved in fatty acid transport. Results indicate that PPARγ signaling increased resulting in enhanced cycling of lipid and carbohydrate substrates into glycolytic/gluconeogenic pathways favoring energy production versus storage in 2,4-DNT-exposed WT and PPARα (-/-) mice. PPARα (-/-) mice appear to have compensated for the loss of PPARα by shifting energy metabolism to PPARα-independent pathways resulting in lower sensitivity to 2,4-DNT when compared with WT mice. Our results validate 2,4-DNT-induced perturbation of PPARα signaling as the molecular initiating event for impaired energy metabolism, weight loss, and decreased exercise performance.


Subject(s)
Dinitrobenzenes/toxicity , Energy Metabolism/genetics , Environmental Pollutants/toxicity , PPAR alpha/metabolism , PPAR gamma/metabolism , Physical Endurance/genetics , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Energy Metabolism/drug effects , Genomics , Glycogen/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/genetics , PPAR gamma/genetics , Physical Endurance/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Swimming
16.
Toxicol Appl Pharmacol ; 266(3): 443-51, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23219714

ABSTRACT

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used munitions compound, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), its N-nitroso product of anaerobic microbial nitroreduction, are contaminants of military sites. Previous studies have shown MNX to be the most acutely toxic among the nitroreduced degradation products of RDX and to cause mild anemia at high dose. The present study compares hematotoxicity with acute oral exposure to MNX with parent RDX. Both RDX and MNX caused a modest decrease in blood hemoglobin and ~50% loss of granulocytes (NOAELs=47 mg/kg) in female Sprague-Dawley rats observed 14 days post-exposure. We explored the possibility that blood cell loss observed after 14 days was delayed in onset because of toxicity to bone marrow (BM) progenitors. RDX and MNX decreased granulocyte/macrophage-colony forming cells (GM-CFCs) at 14, but not 7, days (NOAELs=24 mg/kg). The earliest observed time at which MNX decreased GM-CFCs was 10 days post-exposure. RDX and MNX likewise decreased BM burst-forming units-erythroid (BFU-Es) at 14, but not 7, days. Granulocyte-erythrocyte-monocyte-megakaryocyte (GEMM)-CFCs were unaffected by RDX and MNX at 7 days suggesting precursor depletion did not account for GM-CFC and BFU-E loss. MNX added to the culture media was without effect on GM-CFC formation indicating no direct inhibition. Flow cytometry showed no differential loss of BM multilineage progenitors (Thy1.1(+)) or erythroid (CD71(+)) precursors with MNX suggesting myeloid and erythroid lineages were comparably affected. Collectively, these data indicate that acute exposure to both RDX and MNX caused delayed suppression of myelo- and erythropoiesis with subsequent decrease of peripheral granulocytes and erythrocytes.


Subject(s)
Bone Marrow Cells/drug effects , Explosive Agents/toxicity , Myelopoiesis/drug effects , Triazines/toxicity , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Erythroid Precursor Cells/drug effects , Erythroid Precursor Cells/metabolism , Female , Flow Cytometry , Granulocyte-Macrophage Progenitor Cells/drug effects , Granulocyte-Macrophage Progenitor Cells/metabolism , Hematocrit , Hemoglobins/metabolism , Myeloid Progenitor Cells/drug effects , Myeloid Progenitor Cells/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley
17.
Ecotoxicology ; 21(8): 2372-90, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22975894

ABSTRACT

Evaluation of multiple-stressor effects stemming from habitat degradation, climate change, and exposure to chemical contaminants is crucial for addressing challenges to ecological and environmental health. To assess the effects of multiple stressors in an understudied taxon, the western fence lizard (Sceloporus occidentalis) was used to characterize the individual and combined effects of food limitation, exposure to the munitions constituent 2,4,6-trinitrotoluene (TNT), and Plasmodium mexicanum (lizard malaria) infection. Three experimental assays were conducted including: Experiment I--TNT × Food Limitation, Experiment II--Food Limitation × Malaria Infection, and Experiment III--TNT × Malaria Infection. All experiments had a 30 day duration, the malaria treatment included infected and non infected control lizards, food limitation treatments included an ad libitum control and at least one reduced food ration and TNT exposures consisting of daily oral doses of corn oil control or a corn oil-TNT suspension at 5, 10, 20, 40 mg/kg/day. The individual stressors caused a variety of effects including: reduced feeding, reduced testes mass, anemia, increased white blood cell (WBC) concentrations and increased mass of liver, kidney and spleen in TNT exposures; reduced cholesterol, WBC concentrations and whole body, testes and inguinal fat weights given food limitation; and increased WBC concentrations and spleen weights as well as decreased cholesterol and testes mass in malaria infected lizards. Additive and interactive effects were found among certain stressor combinations including elimination of TNT-induced hormesis for growth under food limitation. Ultimately, our study indicates the potential for effects modulation when environmental stressors are combined.


Subject(s)
Diet , Environmental Exposure , Lizards/physiology , Lizards/parasitology , Malaria/parasitology , Trinitrotoluene/toxicity , Animals , Blood Chemical Analysis , California , Dose-Response Relationship, Drug , Environmental Monitoring , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Hematologic Tests , Immunoenzyme Techniques , Liver/metabolism , Male , Organ Size , Plasmodium/physiology , Spermatozoa/physiology , Testosterone/metabolism , Trinitrotoluene/metabolism
18.
Environ Sci Technol ; 46(14): 7790-8, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22697906

ABSTRACT

Interspecies uncertainty factors in ecological risk assessment provide conservative estimates of risk where limited or no toxicity data is available. We quantitatively examined the validity of interspecies uncertainty factors by comparing the responses of zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) to the energetic compound 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), a known neurotoxicant. Relative toxicity was measured through transcriptional, morphological, and behavioral end points in zebrafish and fathead minnow fry exposed for 96 h to RDX concentrations ranging from 0.9 to 27.7 mg/L. Spinal deformities and lethality occurred at 1.8 and 3.5 mg/L RDX respectively for fathead minnow and at 13.8 and 27.7 mg/L for zebrafish, indicating that zebrafish have an 8-fold greater tolerance for RDX than fathead minnow fry. The number and magnitude of differentially expressed transcripts increased with increasing RDX concentration for both species. Differentially expressed genes were enriched in functions related to neurological disease, oxidative-stress, acute-phase response, vitamin/mineral metabolism and skeletal/muscular disorders. Decreased expression of collagen-coding transcripts were associated with spinal deformity and likely involved in sensitivity to RDX. Our work provides a mechanistic explanation for species-specific sensitivity to RDX where zebrafish responded at lower concentrations with greater numbers of functions related to RDX tolerance than fathead minnow. While the 10-fold interspecies uncertainty factor does provide a reasonable cross-species estimate of toxicity in the present study, the observation that the responses between ZF and FHM are markedly different does initiate a call for concern regarding establishment of broad ecotoxicological conclusions based on model species such as zebrafish.


Subject(s)
Cyprinidae/metabolism , Ecotoxicology/methods , Systems Biology/methods , Triazines/toxicity , Zebrafish/metabolism , Animals , Behavior, Animal/drug effects , Biological Assay , Collagen/genetics , Collagen/metabolism , Cyprinidae/genetics , Gene Expression Profiling , Gene Expression Regulation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Software , Species Specificity , Spine/abnormalities , Spine/drug effects , Survival Analysis , Swimming/physiology , Zebrafish/genetics
19.
Environ Toxicol Chem ; 30(8): 1852-64, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21538488

ABSTRACT

We assessed the impacts of exposure to an environmentally representative concentration (0.83 mg/L) of the explosive cyclotrimethylenetrinitramine (RDX) on fathead minnows (Pimephales promelas) in one-year and multigenerational bioassays. In the one-year bioassay, impacts were assessed by statistical comparisons of females from breeding groups reared in control or RDX-exposure conditions. The RDX had no significant effect on gonadosomatic index or condition factor assayed at 1 d and at one, three, six, nine, and 12 months. The liver-somatic index was significantly increased versus controls only at the 12-month timepoint. RDX had no significant effect on live-prey capture rates, egg production, or fertilization. RDX caused minimal differential-transcript expression with no consistent discernable effect on gene-functional categories for either brain or liver tissues in the one-year exposure. In the multigenerational assay, the effects of acute (96 h) exposure to RDX were compared in fish reared to the F(2) generation in either control or RDX-exposure conditions. Enrichment of gene functions including neuroexcitatory glutamate metabolism, sensory signaling, and neurological development were observed comparing control-reared and RDX-reared fish. Our results indicated that exposure to RDX at a concentration representing the highest levels observed in the environment (0.83 mg/L) had limited impacts on genomic, individual, and population-level endpoints in fathead minnows in a one-year exposure. However, multigenerational exposures altered transcript expression related to neural development and function. Environ.


Subject(s)
Cyprinidae/genetics , Explosive Agents/toxicity , Triazines/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Brain/drug effects , Brain/metabolism , Cyprinidae/growth & development , Cyprinidae/metabolism , Dose-Response Relationship, Drug , Environmental Exposure/analysis , Explosive Agents/metabolism , Female , Fertilization , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression/drug effects , Genome/drug effects , Liver/drug effects , Liver/metabolism , Male , Triazines/metabolism , Water Pollutants, Chemical/metabolism
20.
PLoS One ; 6(2): e14662, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21346803

ABSTRACT

BACKGROUND: Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. CONCLUSIONS/SIGNIFICANCE: A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds.


Subject(s)
Environmental Pollutants/toxicity , Liver/drug effects , Liver/physiology , Toluene/toxicity , Toxicity Tests/methods , Animals , Dose-Response Relationship, Drug , Female , Gene Regulatory Networks/drug effects , Lipid Metabolism/drug effects , Liver/metabolism , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors , Toluene/analysis , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...