Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Hear ; 36(1): 11-28, 2015 Feb.
Article in English | MEDLINE | ID: mdl-27516708

ABSTRACT

Ear canal measurements of acoustic immittance (a term that groups impedance and its inverse, admittance) and the related quantities of acoustic reflectance and power absorbance have been used to assess auditory function and aid in the differential diagnosis of conductive hearing loss for over 50 years. The change in such quantities after stimulation of the acoustic reflex also has been used in diagnosis. In this article, we define these quantities, describe how they are commonly measured, and discuss appropriate calibration procedures and standards necessary for accurate immittance/reflectance measurements.

2.
J Acoust Soc Am ; 125(6): 3733-41, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19507955

ABSTRACT

The potential risk to hearing that mass-storage personal listening devices (PLDs) pose remains unclear. Previous research in this area has either focused on maximum outputs of these devices or on ear-canal measurements of listening levels that could not be compared to standards of occupational noise exposure. The purpose of this study was to compare two standard measurement protocols [ISO 11904-1 (2002), Switzerland; ISO 11904-2 (2004), Switzerland] for the measurement of preferred listening levels of PLD. Noise measurements, behavioral thresholds, and oral interviews were obtained from 30 (18-30 years) PLD users. Preferred listening levels for self-selected music were determined in quiet and background noise using a probe microphone, as well as in the DB-100 ear simulator mounted in KEMAR. The ear-canal measurements were compensated for diffuse-field. Only one of the subjects was found to be listening at hazardous levels once their reported daily usage was accounted for using industrial workplace standards. The variance across subjects was the smallest in the ear-canal measurements that were compensated for diffuse-field equivalence [ISO 11904-1 (2002), Switzerland]. Seven subjects were found to be listening at levels above 85 dBA based on measurements obtained in the KEMAR and then compensated for diffuse-field equivalence.


Subject(s)
Electronics/instrumentation , Electronics/methods , Music , Adolescent , Adult , Behavior , Consumer Behavior , Ear Canal , Female , Humans , Male , Noise , Noise, Transportation , Psychophysics , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...