Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 165(2)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38146640

ABSTRACT

Wolffian duct (WD) maintenance and differentiation is predominantly driven by the androgen action, which is mediated by the androgen receptor (AR). It is well established that the mesenchyme indicates the fate and differentiation of epithelial cells. However, in vivo developmental requirement of mesenchymal AR in WD development is still undefined. By designing a mesenchyme-specific Ar knockout (ARcKO), we discovered that the loss of mesenchymal Ar led to the bilateral or unilateral degeneration of caudal WDs and cystic formation at the cranial WDs. Ex vivo culture of ARcKO WDs invariably resulted in bilateral defects, suggesting that some factor(s) originating from surrounding tissues in vivo might promote WD survival and growth even in the absence of mesenchymal Ar. Mechanistically, we found cell proliferation was significantly reduced in both epithelial and mesenchymal compartments; but cell apoptosis was not affected. Transcriptomic analysis by RNA sequencing of E14.5 mesonephroi revealed 131 differentially expressed genes. Multiple downregulated genes (Top2a, Wnt9b, Lama2, and Lamc2) were associated with morphological and cellular changes in ARcKO male embryos (ie, reduced cell proliferation and decreased number of epithelial cells). Mesenchymal differentiation into smooth muscle cells that are critical for morphogenesis was also impaired in ARcKO male embryos. Taken together, our results demonstrate the crucial roles of the mesenchymal AR in WD maintenance and morphogenesis in mice.


Subject(s)
Mesoderm , Receptors, Androgen , Wolffian Ducts , Receptors, Androgen/metabolism , Mesoderm/metabolism , Wolffian Ducts/growth & development , Wolffian Ducts/metabolism , Animals , Mice , Morphogenesis , Male , Female , Culture Techniques
2.
Trends Endocrinol Metab ; 34(8): 462-473, 2023 08.
Article in English | MEDLINE | ID: mdl-37330364

ABSTRACT

Wolffian ducts (WDs) are the paired embryonic structures that give rise to internal male reproductive tract organs. WDs are initially formed in both sexes but have sex-specific fates during sexual differentiation. Understanding WD differentiation requires insights into the process of fate decisions of epithelial and mesenchymal cells, which are tightly coordinated by endocrine, paracrine, and autocrine signals. In this review, we discuss current advances in understanding the fate-decision process of WD epithelial and mesenchymal lineages from their initial formation at the embryonic stage to postnatal differentiation. Finally, we discuss aberrant cell differentiation in WD abnormalities and pathologies and identify opportunities for future investigations.


Subject(s)
Wolffian Ducts , Female , Humans , Male , Cell Differentiation/genetics
3.
Virology ; 585: 1-20, 2023 08.
Article in English | MEDLINE | ID: mdl-37257253

ABSTRACT

The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Human Papillomavirus Viruses , Genes, p53 , Uterine Cervical Neoplasms/genetics , Papillomavirus Infections/genetics , Apoptosis Regulatory Proteins/metabolism , Glycolysis , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Carcinogenesis/genetics , Hypoxia
4.
Biol Reprod ; 107(6): 1477-1489, 2022 12 10.
Article in English | MEDLINE | ID: mdl-36130202

ABSTRACT

Morphogenesis of the female reproductive tract is regulated by the mesenchyme. However, the identity of the mesenchymal lineage that directs the morphogenesis of the female reproductive tract has not been determined. Using in vivo genetic cell ablation, we identified Amhr2+ mesenchyme as an essential mesenchymal population in patterning the female reproductive tract. After partial ablation of Amhr2+ mesenchymal cells, the oviduct failed to develop its characteristic coiling due to decreased epithelial proliferation and tubule elongation during development. The uterus displayed a reduction in size and showed decreased cellular proliferation in both epithelial and mesenchymal compartments. More importantly, in the uterus, partial ablation of Amhr2+ mesenchyme caused abnormal lumen shape and altered the direction of its long axis from the dorsal-ventral axis to the left-right axis (i.e., perpendicular to the dorsal-ventral axis). Despite these morphological defects, epithelia underwent normal differentiation into secretory and ciliated cells in the oviduct and glandular epithelial cells in the uterus. These results demonstrated that Amhr2+ mesenchyme can direct female reproductive tract morphogenesis by regulating epithelial proliferation and lumen shape without affecting the differentiation of epithelial cell types.


Subject(s)
Mesoderm , Uterus , Animals , Female , Mice , Genitalia, Female , Mesoderm/metabolism , Morphogenesis , Oviducts , Protein Serine-Threonine Kinases/metabolism , Uterus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...