Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38946951

ABSTRACT

In recent years, there has been increased focus on exploring the role the non-protein-coding genome plays in Mendelian disorders. One class of particular interest is long non-coding RNAs (lncRNAs), which has recently been implicated in the regulation of diverse molecular processes. However, because lncRNAs do not encode protein, there is uncertainty regarding what constitutes a pathogenic lncRNA variant, and thus annotating such elements is challenging. The Developmental Genome Anatomy Project (DGAP) and similar projects recruit individuals with apparently balanced chromosomal abnormalities (BCAs) that disrupt or dysregulate genes in order to annotate the human genome. We hypothesized that rearrangements disrupting lncRNAs could be the underlying genetic etiology for the phenotypes of a subset of these individuals. Thus, we assessed 279 cases with BCAs and selected 191 cases with simple BCAs (breakpoints at only two genomic locations) for further analysis of lncRNA disruptions. From these, we identified 66 cases in which the chromosomal rearrangements directly disrupt lncRNAs. Strikingly, the lncRNAs MEF2C-AS1 and ENSG00000257522 are each disrupted in two unrelated cases. Furthermore, in 30 cases, no genes of any other class aside from lncRNAs are directly disrupted, consistent with the hypothesis that lncRNA disruptions could underly the phenotypes of these individuals. To showcase the power of this genomic approach for annotating lncRNAs, here we focus on clinical reports and genetic analysis of two individuals with BCAs and additionally highlight six individuals with likely developmental etiologies due to lncRNA disruptions.

2.
Adv Exp Med Biol ; 1044: 1-14, 2018.
Article in English | MEDLINE | ID: mdl-29956287

ABSTRACT

Chromosomal translocations, rearrangements involving the exchange of segments between chromosomes, were documented in humans in 1959. The first accurately reported clinical phenotype resulting from a translocation was that of Down syndrome. In a small percentage of Down syndrome cases, an extra 21q is provided by a Robertsonian translocation chromosome, either occurring de novo or inherited from a phenotypically normal parent with the translocation chromosome and a balanced genome of 45 chromosomes. Balanced translocations, including both Robertsonian and reciprocal translocations, are typically benign, but meiosis in germ cells with balanced translocations may result in meiotic arrest and subsequent infertility, or in unbalanced gametes, with attendant risks of miscarriage and unbalanced progeny. Most reciprocal translocations are unique. A few to several percent of translocations disrupt haploinsufficient genes or their regulatory regions and result in clinical phenotypes. Balanced translocations from patients with clinical phenotypes have been valuable in mapping disease genes and in illuminating cis-regulatory regions. Mapping of discordant mate pairs from long-insert, low-pass genome sequencing now permits efficient and cost-effective discovery and nucleotide-level resolution of rearrangement breakpoints, information that is absolutely necessary for interpreting the etiology of clinical phenotypes in patients with rearrangements. Pathogenic translocations and other balanced chromosomal rearrangements constitute a class of typically highly penetrant mutation that is cryptic to both clinical microarray and exome sequencing. A significant proportion of rearrangements include additional complexity that is not visible by conventional karyotype analysis. Some proportion of patients with negative findings on exome/genome sequencing and clinical microarray will be found to have etiologic balanced rearrangements only discoverable by genome sequencing with analysis pipelines optimized to recover rearrangement breakpoints.


Subject(s)
Translocation, Genetic , Cell Transformation, Neoplastic , Chromosome Mapping , Heterozygote , Humans , Phenotype
3.
Eur J Hum Genet ; 23(9): 1207-15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25491636

ABSTRACT

Next-generation sequencing (NGS) of exomes and genomes has accelerated the identification of genes involved in Mendelian phenotypes. However, many NGS studies fall short of identifying causal variants, with estimates for success rates as low as 25% for uncovering the pathological variant underlying disease etiology. An important reason for such failures is familial locus heterogeneity, where within a single pedigree causal variants in two or more genes underlie Mendelian trait etiology. As examples of intra- and inter-sibship familial locus heterogeneity, we present 10 consanguineous Pakistani families segregating hearing impairment due to homozygous variants in two different hearing impairment genes and a European-American pedigree in which hearing impairment is caused by four variants in three different genes. We have identified 41 additional pedigrees with syndromic and nonsyndromic hearing impairment for which a single previously reported hearing impairment gene has been identified but only segregates with the phenotype in a subset of affected pedigree members. We estimate that locus heterogeneity occurs in 15.3% (95% confidence interval: 11.9%, 19.9%) of the families in our collection. We demonstrate novel approaches to apply linkage analysis and homozygosity mapping (for autosomal recessive consanguineous pedigrees), which can be used to detect locus heterogeneity using either NGS or SNP array data. Results from linkage analysis and homozygosity mapping can also be used to group sibships or individuals most likely to be segregating the same causal variants and thereby increase the success rate of gene identification.


Subject(s)
Genetic Heterogeneity , Genetic Loci , Genetic Predisposition to Disease , Hearing Loss/genetics , Homozygote , Asian People , Calcium-Binding Proteins/genetics , Chromosome Mapping , Connexin 26 , Connexins/genetics , Consanguinity , Female , Genes, Recessive , Genetic Linkage , Genome, Human , Genotype , Hearing Loss/diagnosis , Hearing Loss/ethnology , Hearing Loss/pathology , Hepatocyte Growth Factor/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Membrane Transport Proteins/genetics , Mutation , Pedigree , Phenotype , Sulfate Transporters , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...