Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(2): e11020, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371866

ABSTRACT

Environmental DNA (eDNA) sampling is a powerful tool for rapidly characterizing biodiversity patterns for specious, cryptic taxa with incomplete taxonomies. One such group that are also of high conservation concern are North American freshwater gastropods. In particular, springsnails of the genus Pyrgulopsis (Family: Hydrobiidae) are prevalent throughout the western United States where >140 species have been described. Many of the described species are narrow endemics known from a single spring or locality, and it is believed that there are likely many additional species which have yet to be described. The distribution of these species across the landscape is of interest because habitat loss and degradation, climate change, groundwater mining, and pollution have resulted in springsnail imperilment rates as high as 92%. Determining distributions with conventional sampling methods is limited by the fact that these snails are often <5 mm in length with few distinguishing morphological characters, making them both difficult to detect and to identify. We developed an eDNA metabarcoding protocol that is both inexpensive and capable of rapid, accurate detection of all known Pyrgulopsis species. When compared with conventional collection techniques, our pipeline consistently resulted in detection at sites previously known to contain Pyrgulopsis springsnails and at a cost per site that is likely to be substantially less than the conventional sampling and individual barcoding that has been done historically. Additionally, because our method uses eDNA extracted from filtered water, it is non-destructive and suitable for the detection of endangered species where "no take" restrictions may be in effect. This effort represents both a tool which is immediately applicable to taxa of high conservation concern across western North America and a case study in the broader application of eDNA sampling for landscape assessments of cryptic taxa of conservation concern.

2.
Mol Ecol Resour ; 24(4): e13932, 2024 May.
Article in English | MEDLINE | ID: mdl-38263813

ABSTRACT

Taxon-specific quantitative PCR (qPCR) assays are commonly used for environmental DNA sampling-based inference of animal presence. These assays require thorough validation to ensure that amplification truly indicates detection of the target taxon, but a thorough validation is difficult when there are potentially many non-target taxa, some of which may have incomplete taxonomies. Here, we use a previously published, quantitative model of cross-amplification risk to describe a framework for assessing qPCR assay specificity when there is missing information and it is not possible to assess assay specificity for each individual non-target confamilial. In this framework, we predict assay specificity against unsampled taxa (non-target taxa without sequence data available) using the sequence information that is available for other confamilials. We demonstrate this framework using four case study assays for: (1) An endemic, freshwater arthropod (meltwater stonefly; Lednia tumana), (2) a globally distributed, marine ascidian (Didemnum perlucidum), (3) a continentally distributed freshwater crustacean (virile crayfish; Faxonius virilis, deanae and nais species complex) and (4) a globally distributed freshwater teleost (common carp; Cyprinus carpio and its close relative C. rubrofuscus). We tested the robustness of our approach to missing information by simulating application of our framework for all possible subsamples of 20-all non-target taxa. Our results suggest that the modelling framework results in estimates which are largely concordant with observed levels of cross-amplification risk using all available sequence data, even when there are high levels of data missingness. We explore potential limitations and extensions of this approach for assessing assay specificity and provide users with an R Markdown template for generating reproducible reports to support their own assay validation efforts.


Subject(s)
Carps , DNA, Environmental , Urochordata , Animals , Insecta , Fresh Water
3.
J Hered ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37946557

ABSTRACT

Predation is an important species interaction to monitor when assessing an invasive species' impact on a particular ecosystem, but it can be difficult to observe and thus, fully understand. On Kaua'i island, invasive Barn Owls (Tyto alba) predate native seabirds, but difficult terrain in this region and the cryptic nature of owl predation make traditional monitoring of predation quite challenging. Using Barn Owls collected as part of removal efforts on Kaua'i and Lehua islands, we conducted DNA metabarcoding of owl digestive tracts to detect and determine seabird species they predate. We used a seabird-targeted 12s marker to sequence 112 swabs from 55 owls and detected six seabird species, including two ESA-listed seabirds - Hawaiian Petrel (Pterodroma sandwichensis) and Newell's Shearwater (Puffinus newelli), in 12 swabs from 11 owls (20% of sampled owls). Corresponding morphological assessment of owl stomach contents detected seabird species as prey items in only 2% (1/55) of sampled owls, highlighting the utility of molecular approaches for detecting diet items, especially degraded or visually absent items. Additionally, this approach has proven very useful in revealing cryptic trophic interactions in inaccessible seabird populations. For the most comprehensive analysis of diet, the use of both esophageal and cloacal swabs for metabarcoding is recommended. Supplementing metabarcoding with other methods that can provide complementary prey information, such as stable isotope analysis, would help to characterize trophic interactions more fully. The method described here has proven to be a reliable tool for investigating diet in invasive owls and may be used to investigate cryptic predation in living birds as a minimally invasive technique, as well.

5.
Trends Ecol Evol ; 38(11): 1072-1084, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37479555

ABSTRACT

Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.

6.
Mol Ecol Resour ; 22(8): 2994-3005, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35778862

ABSTRACT

Environmental DNA (eDNA) sampling is a highly sensitive and cost-effective technique for wildlife monitoring, notably through the use of qPCR assays. However, it can be difficult to ensure assay specificity when many closely related species co-occur. In theory, specificity may be assessed in silico by determining whether assay oligonucleotides have enough base-pair mismatches with nontarget sequences to preclude amplification. However, the mismatch qualities required are poorly understood, making in silico assessments difficult and often necessitating extensive in vitro testing-typically the greatest bottleneck in assay development. Increasing the accuracy of in silico assessments would therefore streamline the assay development process. In this study, we paired 10 qPCR assays with 82 synthetic gene fragments for 530 specificity tests using SYBR Green intercalating dye (n = 262) and TaqMan hydrolysis probes (n = 268). Test results were used to train random forest classifiers to predict amplification. The primer-only model (SYBR Green results) and full-assay model (TaqMan probe-based results) were 99.6% and 100% accurate, respectively, in cross-validation. We further assessed model performance using six independent assays not used in model training. In these tests the primer-only model was 92.4% accurate (n = 119) and the full-assay model was 96.5% accurate (n = 144). The high performance achieved by these models makes it possible for eDNA practitioners to more quickly and confidently develop assays specific to the intended target. Practitioners can access the full-assay model online via eDNAssay (https://NationalGenomicsCenter.shinyapps.io/eDNAssay), a user-friendly tool for predicting qPCR cross-amplification.


Subject(s)
DNA, Environmental , Benzothiazoles , Diamines , Machine Learning , Oligonucleotides , Quinolines , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
7.
ACS Chem Neurosci ; 11(13): 2019-2030, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32511908

ABSTRACT

The goal of this research is the identification of new treatments for neuropathic pain. We characterized the GABAergic system of immortalized mouse and human microglia using electrophysiology and qRT-PCR. Cells from both species exhibited membrane current changes in response to γ-aminobutyric acid, with an EC50 of 260 and 1940 nM, respectively. Human microglia expressed high levels of the γ-aminobutyric acid type A receptor (GABAAR) α3 subunit, which can assemble with ß1 and γ2/δ subunits to form functional GABAARs. Mouse microglia contained α2, α3, and α5, in addition to ß1-3, γ1-2, and δ, mRNA, enabling a more diverse array of GABAARs than human microglia. Benzodiazepines are well-established modulators of GABAAR activity, prompting a screen of a library of diverse benzodiazepines in microglia for cellular effects. Several active compounds were identified by reduction of nitric oxide (NO) in interferon gamma and lipopolysaccharide activated microglia. However, further investigation with GABAAR antagonists flumazenil, picrotoxin, and bicuculline demonstrated that GABAARs were not linked to the NO response. A screen of 48 receptors identified the κ-opioid receptor and to a lesser extent the µ-opioid receptor as molecular targets, with opioid receptor antagonist norbinaltorphimine reversing benzodiazepine induced reduction of microglial NO. Functional assays identified the downregulation of inducible NO synthase as the mode of action of imidazodiazepines MP-IV-010 and GL-IV-03. Like other κ-opioid receptor agonists, GL-IV-03 reduced the agitation response in both phases of the formalin nociception test. However, unlike other κ-opioid receptor agonists, MP-IV-010 and GL-IV-03 did not impair sensorimotor coordination in mice. Thus, MP-IV-010 and GL-IV-03 represent a new class of nonsedative drug candidates for inflammatory pain.


Subject(s)
Microglia , Nitric Oxide , Animals , GABA-A Receptor Antagonists/pharmacology , Mice , Pain , Receptors, Opioid, kappa
8.
Mol Ecol Resour ; 18(6): 1392-1401, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30009542

ABSTRACT

Environmental DNA (eDNA) sampling-the detection of genetic material in the environment to infer species presence-has rapidly grown as a tool for sampling aquatic animal communities. A potentially powerful feature of environmental sampling is that all taxa within the habitat shed DNA and so may be detectable, creating opportunity for whole-community assessments. However, animal DNA in the environment tends to be comparatively rare, making it necessary to enrich for genetic targets from focal taxa prior to sequencing. Current metabarcoding approaches for enrichment rely on bulk amplification using conserved primer annealing sites, which can result in skewed relative sequence abundance and failure to detect some taxa because of PCR bias. Here, we test capture enrichment via hybridization as an alternative strategy for target enrichment using a series of experiments on environmental samples and laboratory-generated, known-composition DNA mixtures. Capture enrichment resulted in detecting multiple species in both kinds of samples, and postcapture relative sequence abundance accurately reflected initial relative template abundance. However, further optimization is needed to permit reliable species detection at the very low-DNA quantities typical of environmental samples (<0.1 ng DNA). We estimate that our capture protocols are comparable to, but less sensitive than, current PCR-based eDNA analyses.


Subject(s)
Aquatic Organisms/classification , Aquatic Organisms/genetics , DNA Barcoding, Taxonomic/methods , DNA/isolation & purification , Environmental Monitoring/methods , Metagenomics/methods , Nucleic Acid Hybridization/methods , Animals , DNA/genetics , Sensitivity and Specificity
9.
Trends Ecol Evol ; 33(4): 240-250, 2018 04.
Article in English | MEDLINE | ID: mdl-29496340

ABSTRACT

Ecologists and evolutionary biologists have long been interested in the role of interspecific competition in the diversification of clades. These studies often focus on a single taxonomic group, making the implicit assumption that important competitive interactions occur only between closely related taxa, despite abundant documentation of intense competition between species that are distantly related. Specifically, this assumption ignores convergence of distantly related competitors on limiting niche axes and thus may miss cryptic effects of distantly related competitors on the evolution of focal clades. For example, distantly related competitors may act as important drivers of niche conservatism within clades, a pattern commonly ascribed to evolutionary constraints or the abiotic environment. Here we propose an alternative model of how niche similarity evolves when the functional traits of interest are mediated by unrelated phenotypic traits, as is often the case for distantly related competitors. This model represents an important conceptual step towards a more accurate, taxonomically inclusive understanding of the role that competition plays in the micro- and macroevolution of interacting species.


Subject(s)
Biological Evolution , Classification , Ecology/trends
10.
Glob Chang Biol ; 23(12): 5021-5023, 2017 12.
Article in English | MEDLINE | ID: mdl-28741794

ABSTRACT

For decades, it has been assumed that introgressive hybridization between introduced rainbow trout and native cutthroat trout in western North America will lead to genomic extinction of the latter. A broad-scale re-examination of their interaction indicates that ecological differences between these species and demographic processes are dictating the location and extent of their hybrid zones, and that runaway introgression between these taxa is unlikely.


Subject(s)
Animal Distribution , Climate Change , Hybridization, Genetic , Trout/genetics , Animals , Ecology , Genome , North America
11.
PLoS One ; 11(11): e0163563, 2016.
Article in English | MEDLINE | ID: mdl-27828980

ABSTRACT

Among the many threats posed by invasions of nonnative species is introgressive hybridization, which can lead to the genomic extinction of native taxa. This phenomenon is regarded as common and perhaps inevitable among native cutthroat trout and introduced rainbow trout in western North America, despite that these taxa naturally co-occur in some locations. We conducted a synthetic analysis of 13,315 genotyped fish from 558 sites by building logistic regression models using data from geospatial stream databases and from 12 published studies of hybridization to assess whether environmental covariates could explain levels of introgression between westslope cutthroat trout and rainbow trout in the U.S. northern Rocky Mountains. A consensus model performed well (AUC, 0.78-0.86; classification success, 72-82%; 10-fold cross validation, 70-82%) and predicted that rainbow trout introgression was significantly associated with warmer water temperatures, larger streams, proximity to warmer habitats and to recent sources of rainbow trout propagules, presence within the historical range of rainbow trout, and locations further east. Assuming that water temperatures will continue to rise in response to climate change and that levels of introgression outside the historical range of rainbow trout will equilibrate with those inside that range, we applied six scenarios across a 55,234-km stream network that forecast 9.5-74.7% declines in the amount of habitat occupied by westslope cutthroat trout populations of conservation value, but not the wholesale loss of such populations. We conclude that introgression between these taxa is predictably related to environmental conditions, many of which can be manipulated to foster largely genetically intact populations of westslope cutthroat trout and help managers prioritize conservation activities.


Subject(s)
Climate Change , Climate , Hybridization, Genetic , Oncorhynchus/genetics , Animals , Conservation of Natural Resources/methods , Ecosystem , Genetics, Population , Genotype , Geography , Idaho , Logistic Models , Montana , Oncorhynchus/classification , Oncorhynchus/physiology , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/physiology , Rivers
12.
Ecol Evol ; 6(3): 688-706, 2016 02.
Article in English | MEDLINE | ID: mdl-26865958

ABSTRACT

Introgressive hybridization between native and introduced species is a growing conservation concern. For native cutthroat trout and introduced rainbow trout in western North America, this process is thought to lead to the formation of hybrid swarms and the loss of monophyletic evolutionary lineages. Previous studies of this phenomenon, however, indicated that hybrid swarms were rare except when native and introduced forms of cutthroat trout co-occurred. We used a panel of 86 diagnostic, single nucleotide polymorphisms to evaluate the genetic composition of 3865 fish captured in 188 locations on 129 streams distributed across western Montana and northern Idaho. Although introgression was common and only 37% of the sites were occupied solely by parental westslope cutthroat trout, levels of hybridization were generally low. Of the 188 sites sampled, 73% contained ≤5% rainbow trout alleles and 58% had ≤1% rainbow trout alleles. Overall, 72% of specimens were nonadmixed westslope cutthroat trout, and an additional 3.5% were nonadmixed rainbow trout. Samples from seven sites met our criteria for hybrid swarms, that is, an absence of nonadmixed individuals and a random distribution of alleles within the sample; most (6/7) were associated with introgression by Yellowstone cutthroat trout. In streams with multiple sites, upstream locations exhibited less introgression than downstream locations. We conclude that although the widespread introduction of nonnative trout within the historical range of westslope cutthroat trout has increased the incidence of introgression, sites containing nonadmixed populations of this taxon are common and broadly distributed.

13.
PLoS One ; 10(11): e0142008, 2015.
Article in English | MEDLINE | ID: mdl-26536367

ABSTRACT

Environmental DNA (eDNA) sampling is a powerful tool for detecting invasive and native aquatic species. Often, species of conservation interest co-occur with other, closely related taxa. Here, we developed qPCR (quantitative PCR) markers which distinguish westslope cutthroat trout (Oncorhynchus clarkii lewsi), Yellowstone cutthroat trout (O. clarkii bouvieri), and rainbow trout (O. mykiss), which are of conservation interest both as native species and as invasive species across each other's native ranges. We found that local polymorphisms within westslope cutthroat trout and rainbow trout posed a challenge to designing assays that are generally applicable across the range of these widely-distributed species. Further, poorly-resolved taxonomies of Yellowstone cutthroat trout and Bonneville cutthroat trout (O. c. utah) prevented design of an assay that distinguishes these recognized taxa. The issues of intraspecific polymorphism and unresolved taxonomy for eDNA assay design addressed in this study are likely to be general problems for closely-related taxa. Prior to field application, we recommend that future studies sample populations and test assays more broadly than has been typical of published eDNA assays to date.


Subject(s)
Environment , Fish Proteins/genetics , Genetic Markers , Oncorhynchus/classification , Oncorhynchus/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Genotype , Species Specificity
14.
Mol Ecol Resour ; 15(1): 216-27, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24890199

ABSTRACT

Environmental DNA (eDNA) detection has emerged as a powerful tool for monitoring aquatic organisms, but much remains unknown about the dynamics of aquatic eDNA over a range of environmental conditions. DNA concentrations in streams and rivers will depend not only on the equilibrium between DNA entering the water and DNA leaving the system through degradation, but also on downstream transport. To improve understanding of the dynamics of eDNA concentration in lotic systems, we introduced caged trout into two fishless headwater streams and took eDNA samples at evenly spaced downstream intervals. This was repeated 18 times from mid-summer through autumn, over flows ranging from approximately 1-96 L/s. We used quantitative PCR to relate DNA copy number to distance from source. We found that regardless of flow, there were detectable levels of DNA at 239.5 m. The main effect of flow on eDNA counts was in opposite directions in the two streams. At the lowest flows, eDNA counts were highest close to the source and quickly trailed off over distance. At the highest flows, DNA counts were relatively low both near and far from the source. Biomass was positively related to eDNA copy number in both streams. A combination of cell settling, turbulence and dilution effects is probably responsible for our observations. Additionally, during high leaf deposition periods, the presence of inhibitors resulted in no amplification for high copy number samples in the absence of an inhibition-releasing strategy, demonstrating the necessity to carefully consider inhibition in eDNA analysis.


Subject(s)
DNA/isolation & purification , Rivers/chemistry , Polymerase Chain Reaction
15.
PLoS One ; 8(3): e59520, 2013.
Article in English | MEDLINE | ID: mdl-23555689

ABSTRACT

Environmental DNA (eDNA) is being rapidly adopted as a tool to detect rare animals. Quantitative PCR (qPCR) using probe-based chemistries may represent a particularly powerful tool because of the method's sensitivity, specificity, and potential to quantify target DNA. However, there has been little work understanding the performance of these assays in the presence of closely related, sympatric taxa. If related species cause any cross-amplification or interference, false positives and negatives may be generated. These errors can be disastrous if false positives lead to overestimate the abundance of an endangered species or if false negatives prevent detection of an invasive species. In this study we test factors that influence the specificity and sensitivity of TaqMan MGB assays using co-occurring, closely related brook trout (Salvelinus fontinalis) and bull trout (S. confluentus) as a case study. We found qPCR to be substantially more sensitive than traditional PCR, with a high probability of detection at concentrations as low as 0.5 target copies/µl. We also found that number and placement of base pair mismatches between the Taqman MGB assay and non-target templates was important to target specificity, and that specificity was most influenced by base pair mismatches in the primers, rather than in the probe. We found that insufficient specificity can result in both false positive and false negative results, particularly in the presence of abundant related species. Our results highlight the utility of qPCR as a highly sensitive eDNA tool, and underscore the importance of careful assay design.


Subject(s)
DNA Primers/genetics , DNA/genetics , Environment , Polymerase Chain Reaction/methods , Trout/classification , Trout/genetics , Animals , DNA/chemistry , DNA Probes/chemistry , DNA Probes/genetics , Phylogeny , Reproducibility of Results , Taq Polymerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...