Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731854

ABSTRACT

Factors that reduce the risk of developing colorectal cancer include biologically active substances. In our previous research, we demonstrated the anti-inflammatory, immunomodulatory, and antioxidant effects of oat beta-glucans in gastrointestinal disease models. The aim of this study was to investigate the effect of an 8-week consumption of a diet supplemented with low-molar-mass oat beta-glucan in two doses on the antioxidant potential, inflammatory parameters, and colonic metabolomic profile in azoxymethane(AOM)-induced early-stage colorectal cancer in the large intestine wall of rats. The results showed a statistically significant effect of AOM leading to the development of neoplastic changes in the colon. Consumption of beta-glucans induced changes in colonic antioxidant potential parameters, including an increase in total antioxidant status, a decrease in the superoxide dismutase (SOD) activity, and a reduction in thiobarbituric acid reactive substance (TBARS) concentration. In addition, beta-glucans decreased the levels of pro-inflammatory interleukins (IL-1α, IL-1ß, IL-12) and C-reactive protein (CRP) while increasing the concentration of IL-10. Metabolomic studies confirmed the efficacy of oat beta-glucans in the AOM-induced early-stage colon cancer model by increasing the levels of metabolites involved in metabolic pathways, such as amino acids, purine, biotin, and folate. In conclusion, these results suggest a wide range of mechanisms involved in altering colonic metabolism during the early stage of carcinogenesis and a strong influence of low-molar-mass oat beta-glucan, administered as dietary supplement, in modulating these mechanisms.


Subject(s)
Antioxidants , Azoxymethane , Colorectal Neoplasms , beta-Glucans , Animals , beta-Glucans/pharmacology , Azoxymethane/toxicity , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Rats , Male , Antioxidants/pharmacology , Antioxidants/metabolism , Disease Models, Animal , Avena/chemistry , Superoxide Dismutase/metabolism , Colon/metabolism , Colon/pathology , Colon/drug effects , Oxidative Stress/drug effects , Rats, Wistar , C-Reactive Protein/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732098

ABSTRACT

Nanosilver is a popular nanomaterial, the potential influence of which on humans is of serious concern. Herein, we exposed male Wistar rats to two regimens: a repeated oral dose of 30 mg/kg bw silver nanoparticles (AgNPs) over 28 days and a single-dose injection of 5 mg/kg bw of AgNPs. At three different time points, we assessed antioxidant defense, oxidative stress and inflammatory parameters in the colon, as well as toxicity markers in the liver and plasma. Both experimental scenarios showed increased oxidative stress and inflammation in the colon. Oral administration seemed to be linked to increased reactive oxygen species generation and lipid peroxidation, while the effects induced by the intravenous exposure were probably mediated by silver ions released from the AgNPs. Repeated oral exposure had a more detrimental effect than the single-dose injection. In conclusion, both administration routes had a similar impact on the colon, although the underlying mechanisms are likely different.


Subject(s)
Colon , Metal Nanoparticles , Oxidative Stress , Rats, Wistar , Reactive Oxygen Species , Silver , Animals , Silver/chemistry , Metal Nanoparticles/chemistry , Colon/drug effects , Colon/metabolism , Colon/pathology , Male , Rats , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Lipid Peroxidation/drug effects , Administration, Oral , Inflammation/chemically induced , Inflammation/metabolism , Antioxidants/pharmacology , Liver/metabolism , Liver/drug effects
3.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674816

ABSTRACT

Colorectal cancer (CRC) accounts for 30% of all cancer cases worldwide and is the second leading cause of cancer-related deaths. CRC develops over a long period of time, and in the early stages, pathological changes can be mitigated through nutritional interventions using bioactive plant compounds. Our study aims to determine the effect of highly purified oat beta-glucan on an animal CRC model. The study was performed on forty-five male Sprague-Dawley rats with azoxymethane-induced early-stage CRC, which consumed feed containing 1% or 3% low molar mass oat beta-glucan (OBG) for 8 weeks. In the large intestine, morphological changes, CRC signaling pathway genes (RT-PCR), and proteins (Western blot, immunohistochemistry) expression were analyzed. Whole blood hematology and blood redox status were also performed. Results indicated that the histologically confirmed CRC condition led to a downregulation of the WNT/ß-catenin pathway, along with alterations in oncogenic and tumor suppressor gene expression. However, OBG significantly modulated these effects, with the 3% OBG showing a more pronounced impact. Furthermore, CRC rats exhibited elevated levels of oxidative stress and antioxidant enzyme activity in the blood, along with decreased white blood cell and lymphocyte counts. Consumption of OBG at any dose normalized these parameters. The minimal effect of OBG in the physiological intestine and the high activity in the pathological condition suggest that OBG is both safe and effective in early-stage CRC.


Subject(s)
Avena , Dietary Supplements , Oxidative Stress , Rats, Sprague-Dawley , beta-Glucans , Animals , Male , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Avena/chemistry , Rats , Oxidative Stress/drug effects , Colonic Neoplasms/prevention & control , Anticarcinogenic Agents/pharmacology , Azoxymethane , Wnt Signaling Pathway/drug effects , Disease Models, Animal , Animal Feed , Colon/pathology , Colon/drug effects , Colon/metabolism , Colorectal Neoplasms/prevention & control , Antioxidants/pharmacology
4.
Sci Rep ; 13(1): 18223, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880383

ABSTRACT

Regular physical effort produces metabolic changes manifested as adaptation to exercise and increasing performance. In humans these changes have been characterized at metabolome level as depending on the discipline. However, all sports involve some level of changes in protein, carbohydrate and lipid metabolism. Recently, also performance horses have been subjected to metabolic analyses, but similar studies were lacking in sports dogs. In this study we performed the metabolomic analysis in plasma of Whippet dogs regularly trained and competing in coursing events, and untrained dogs of the same breed, fed with the same diet. We have also compared the hematological and blood biochemical results in these two groups of dogs. Basic blood tests indicated that enzymes related to lipid metabolism (lipase and gamma-glutamyltransferase) differed considerably between the groups. Metabolomic analysis of plasma confirmed the metabolic shift expressed as the differences in triacylglycerols levels between training and non-training dogs, aimed at improving the use of fatty acids as a source of energy during exertion. Surprisingly, other classes of metabolites were only hardly changed when comparing training and non-training Whippets.


Subject(s)
Diet , Metabolomics , Humans , Dogs , Animals , Horses , Triglycerides , Metabolomics/methods , Proteins , Physical Exertion
5.
J Vet Res ; 67(1): 139-146, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37008762

ABSTRACT

Introduction: Whippets are traditionally trained to compete in lure coursing. While in humans and horses, training is routinely monitored by special tests, this is not carried out in the training of whippets. The aim of this study was to check if laboratory tests designed for racehorses could be useful in monitoring whippets training for lure coursing. Material and Methods: Blood samples were taken from 14 whippets at several time points: before exercise (including warm-up), immediately after, 15 min after and 30 min after exercise sessions of straight 400 m runs (T) and coursing (C). Routine haematological values and lactate concentrations (LA) were measured. Results: White blood cell count, red blood cell count, haemoglobin concentration and haematocrit increased significantly in both types of exertion, and no differences between the types were observed. The LA measured immediately after the run were increased, but there was no significant difference between the types of session (T and C). After both types of activity, LA decreased within 30 min post run by 9-11 mmol/L. Lactate concentrations were significantly higher 30 min after the T sessions than after the C sessions. Conclusion: The results confirmed that typical exercise-induced changes occurred in whippets training for lure coursing; however, the scale of changes was different to that in horses. The sampling scheme used in racehorses can be applied to whippets and can be useful as a laboratory tool for monitoring their training.

6.
Antioxidants (Basel) ; 11(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36009280

ABSTRACT

The exposure to diesel exhaust emissions (DEE) contributes to negative health outcomes and premature mortality. At the same time, the health effects of the exposure to biodiesel exhaust emission are still in scientific debate. The aim of presented study was to investigate in an animal study the effects of exposure to DEE from two types of biodiesel fuels, 1st generation B7 biodiesel containing 7% of fatty acid methyl esters (FAME) or 2nd generation biodiesel (SHB20) containing 7% of FAME and 13% of hydrotreated vegetable oil (HVO), on the oxidative stress in testes and possible protective effects of dietary intervention with blackcurrant pomace (BC). Adult Fisher344/DuCrl rats were exposed by inhalation (6 h/day, 5 days/week for 4 weeks) to 2% of DEE from B7 or SHB20 fuel mixed with air. The animals from B7 (n = 14) and SHB20 (n = 14) groups subjected to filtered by a diesel particulate filter (DPF) or unfiltered DEE were maintained on standard feed. The rats from B7+BC (n = 12) or SHB20+BC (n = 12), exposed to DEE in the same way, were fed with feed supplemented containing 2% (m/m) of BC. The exposure to exhaust emissions from 1st and 2nd generation biodiesel resulted in induction of oxidative stress in the testes. Higher concentration of the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOHs), 25-dihydroxycholesterols (25(OH)2Ch), and 7-ketocholesterol (7-KCh) level), as well as decreased level of antioxidant defense systems such as reduced glutathione (GSH), GSH/GSSG ratio, and increased level of oxidized glutathione (GSSG)) were found. Dietary intervention reduced the concentration of TBARS, 7-KCh, LOOHs, and the GSSG level, and elevated the GSH level in testes. In conclusion, DEE-induced oxidative stress in the testes was related to the biodiesel feedstock and the application of DPF. The SHB20 DEE without DPF technology exerted the most pronounced toxic effects. Dietary intervention with BC in rats exposed to DEE reduced oxidative stress in testes and improved antioxidative defense parameters, however the redox balance in the testes was not completely restored.

7.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163290

ABSTRACT

Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials. The level of exposure to nanosilver is constantly raising, and a growing body of research highlights that it is harmful to the health, especially the nervous system, of humans. The potential pathways through which nanosilver affects neurons include the release of silver ions and the associated induction of oxidative stress. To better understand the mechanisms underlying the neurotoxicity of nanosilver, in this study we exposed male Wistar rats to 0.5 mg/kg body weight of AgNPs coated with bovine serum albumin (BSA), polyethylene glycol (PEG), or citrate, or to AgNO3 as a source of silver ions for 28 days and assessed the expression of antioxidant defense markers in the hippocampus of the exposed animals after 1 week of spatial memory training. We also evaluated the influence of AgNPs coating on neurosteroidogenesis in the rat hippocampus. The results showed that AgNPs disrupted the antioxidant system in the hippocampus and induced oxidative stress in a coating-dependent manner, which could potentially be responsible for neurodegeneration and cognitive disorders. The analysis of the influence of AgNPs on neurosteroids also indicated coating-dependent modulation of steroid levels with a significant decrease in the concentrations of progesterone and 17α-progesterone in AgNPs(BSA), AgNPs(PEG), and Ag+ groups. Furthermore, exposure to AgNPs or Ag+ resulted in the downregulation of selected genes involved in antioxidant defense (Cat), neurosteroid synthesis (Star, Hsd3b3, Hsd17b1, and Hsd17b10), and steroid metabolism (Ar, Er1, and Er2). In conclusion, depending on the coating material used for their stabilization, AgNPs induced oxidative stress and modulated the concentrations of steroids as well as the expression of genes involved in steroid synthesis and metabolism.


Subject(s)
Metal Nanoparticles/toxicity , Silver/toxicity , Animals , Antioxidants/metabolism , Brain/drug effects , Brain/metabolism , Citric Acid/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Metal Nanoparticles/chemistry , Models, Animal , Neurotoxicity Syndromes/etiology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Polyethylene Glycols/pharmacology , Rats , Rats, Wistar , Serum Albumin, Bovine/pharmacology , Silver/chemistry , Silver Nitrate/pharmacology
8.
Foods ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613375

ABSTRACT

The primary aim of this experiment was to investigate the bioactivity potential and polyphenolic profile of defatted raspberry seeds (DRS) extracts from three varieties (Willamette, Meeker, and Polka) using the in vitro tests HPLC-DAD and UHPLC-Triple-TOF-MS. Extracts were obtained using ultrasound-assisted extraction (UAE) or hydrolysis. The antioxidant activity of the extracts was tested using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) cation (ABTS), and ferric reducing antioxidant power (FRAP) assays. Furthermore, the extracts were tested for antimicrobial activity using the disk diffusion method for four bacterial cultures (Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, and Salmonella enterica subsp. enterica Enteritidis). In vitro antiproliferative activity was tested using cervical carcinoma (HeLa), breast adenocarcinoma (MCF7), and fetal lung (MRC-5) human cell lines. In total, 32 phenolic compounds were detected in DRS extracts. A small quantity of ellagic acid (EA) was in free form, while EA content increased after the hydrolysis process. The extracts from the Meeker variety exhibited the highest antioxidant activity, analyzed with DPPH and FRAP assays, while extracts from the Polka variety had the highest activity towards ABTS•+ radical scavenging activity. The UAE samples expressed higher antiproliferative activity in comparison to hydrolysis extracts. The results indicate that DRS extracts have certain bioactivity, and their use in the food, cosmetic, and pharmaceutical industries is recommended.

9.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884506

ABSTRACT

Due to their potent antibacterial properties, silver nanoparticles (AgNPs) are widely used in industry and medicine. However, they can cross the brain-blood barrier, posing a risk to the brain and its functions. In our previous study, we demonstrated that oral administration of bovine serum albumin (BSA)-coated AgNPs caused an impairment in spatial memory in a dose-independent manner. In this study, we evaluated the effects of AgNPs coating material on cognition, spatial memory functioning, and neurotransmitter levels in rat hippocampus. AgNPs coated with BSA (AgNPs(BSA)), polyethylene glycol (AgNPs(PEG)), or citrate (AgNPs(Cit)) or silver ions (Ag+) were orally administered at a dose of 0.5 mg/kg b.w. to male Wistar rats for a period of 28 days, while the control (Ctrl) rats received 0.2 mL of water. The acquisition and maintenance of spatial memory related to place avoidance were assessed using the active allothetic place avoidance task, in which rats from AgNPs(BSA), AgNPs(PEG), and Ag+ groups performed worse than the Ctrl rats. In the retrieval test assessing long-term memory, only rats from AgNPs(Cit) and Ctrl groups showed memory maintenance. The analysis of neurotransmitter levels indicated that the ratio between serotonin and dopamine concentration was disturbed in the AgNPs(BSA) rats. Furthermore, treatment with AgNPs or Ag+ resulted in the induction of peripheral inflammation, which was reflected by the alterations in the levels of serum inflammatory mediators. In conclusion, depending on the coating material used for their stabilization, AgNPs induced changes in memory functioning and concentration of neurotransmitters.


Subject(s)
Cognition Disorders/pathology , Hippocampus/pathology , Metal Nanoparticles/toxicity , Polyethylene Glycols/toxicity , Serum Albumin, Bovine/toxicity , Silver/chemistry , Animals , Citrates/chemistry , Citrates/toxicity , Cognition Disorders/chemically induced , Cognition Disorders/metabolism , Cytokines/metabolism , Hippocampus/drug effects , Male , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Rats , Rats, Wistar , Serum Albumin, Bovine/chemistry
10.
Foods ; 10(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681524

ABSTRACT

Organic agriculture is considered one of the elements of sustainable food production and consumption, mainly due to its limited impact on the natural environment. At the same time, the quality features of organically produced foods, especially sensory attributes and health promoting values, are important factors determining consumers' interest, and therefore play a key role in the organic sector's development. The aim of this study was to investigate the sensory characteristics and concentrations of sugars and selected health-promoting bioactive compounds of organic courgette compared to conventionally grown courgette. In addition, untargeted metabolomic analysis of the courgette fruits was performed. The results of this study did not show a significant effect of the horticultural system (organic vs. conventional) on the concentrations of vitamin C, carotenoids, and chlorophylls in the courgette fruits. However, the fruits from the organic systems were significantly richer in sugars when compared to the conventionally cultivated ones (p = 0.038). Moreover, the organic fruits fertilized with manure contained significantly higher amounts of polyphenols, including gallic acid (p = 0.016), chlorogenic acid (p = 0.012), ferulic acid (p = 0.019), and quercetin-3-O-rutinoside (p = 0.020) compared to the conventional fruits. The untargeted analysis detected features significantly differentiating courgette fruits depending on the cultivar and horticultural system. Some significant differences in sensory values were also identified between fruits representing the two cultivars and coming from the horticultural systems compared in the study. Conventional courgettes were characterized by the most intensive peel color and aquosity, but at the same time were the least hard and firm compared to the fruits from the two organic systems. There was also a trend towards higher overall quality of the organically grown fruits. The presented study shows that the organic and conventional courgette fruits differ in a number of quality features which can influence consumers' health and purchasing choices.

11.
Nutrients ; 13(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34444949

ABSTRACT

The prevalence of gastritis in humans is constantly growing and a prediction of an increase in this health problem is observed in many countries. For this reason, effective dietary therapies are sought that can alleviate the course of this disease. The objective of this study was to determine the effect of chemically pure oat beta-glucan preparations with different molar masses, low or high, used for 30 days in patients with histologically diagnosed chronic gastritis. The study enrolled 48 people of both genders of different ages recruited from 129 patients with a gastritis diagnosis. Before and after the therapy, hematological, biochemical, immunological and redox balance parameters were determined in the blood and the number of lactic acid bacteria and SCFA concentrations in the feces. Our results demonstrated a beneficial effect of oat beta-glucans with high molar mass in chronic gastritis in humans, resulting in reduced mucosal damage and healthy changes in SCFA fecal concentration and peripheral blood serum glutathione metabolism and antioxidant defense parameters. This fraction of a highly purified oat beta-glucan is safe for humans. Its action is effective after 30 days of use, which sheds new light on the nutritional treatment of chronic gastritis.


Subject(s)
Avena , Gastritis/diet therapy , beta-Glucans/administration & dosage , Adult , Aged , Chronic Disease , Double-Blind Method , Fatty Acids, Volatile/metabolism , Feces/chemistry , Feces/microbiology , Female , Gastritis/microbiology , Humans , Lactobacillales/metabolism , Male , Middle Aged , Osmolar Concentration , Treatment Outcome , Young Adult
12.
Front Vet Sci ; 8: 681951, 2021.
Article in English | MEDLINE | ID: mdl-34239914

ABSTRACT

The objective of this placebo-controlled, double-blind, randomized study (designed according to evidence-based medicine standards) was to determine the effect of 30-day administration of powdered brown algae, Ascophyllum nodosum (ProDen PlaqueOff, SwedenCare AB, Sweden), on saliva metabolomes in dogs. Sixty client-owned dogs underwent professional dental cleaning and were randomly subdivided into two groups receiving daily powdered brown algae A. nodosum, or a placebo (microcrystalline cellulose in powder), adjusted to their bodyweight. After a comprehensive oral health assessment and professional dental cleaning, which were both performed under general anesthesia, clinical assessments for gingivitis, plaque, and calculus were conducted. Saliva samples were collected at Day 0 and Day 30 of supplementation. Whole saliva is a mixed fluid that is derived predominantly from the major salivary glands but it also contains numerous other constituents. Additionally, its composition varies on whether salivary secretion is basal or stimulated. Authors put efforts to avoid contamination of saliva by other constituents and character of saliva was basal. Quadrupole time-of-flight (QTOF) mass spectrometer was used to conduct analysis of the saliva samples. Metabolomic analyses identified clear changes after 30 days of supplementation, and the direction of these changes was completely different than in dogs that received a placebo treatment during the same period. The positive clinical effect of 30 days of A. nodosum supplementation on oral health status in dogs described in previous publication combined with the absence of some metabolites in the saliva of dogs on day 30 of supplementation suggest that brown algae inhibit or turn off some pathways that could enhance plaque or calculus development. The exact mechanism of A. nodosum is still unclear and warrants further study.

13.
Int J Mol Sci ; 22(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923129

ABSTRACT

BACKGROUND: The incidence of Crohn's disease (CD) is increasing worldwide, and it has currently become a serious public health issue in society. The treatment of CD continues throughout a patient's lifetime, and therefore, it is necessary to develop new, effective treatment methods, including dietotherapy. The present study aimed to determine the effects of consumption of oat beta-glucans with different molar mass on colon inflammation (colitis) in the early stages of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced CD in an animal model. METHODS: Sprague-Dawley rats (control and TNBS-induced CD) were divided into three dietary groups and fed for 3 days (reflecting acute inflammation) or 7 days (reflecting remission) with a feed containing 1% low (ßGl) or high (ßGh) molar mass oat beta-glucan or a feed without this polysaccharide. The level of colon inflammatory markers and the expression of cytokines and their receptor genes were measured by ELISA and RT-PCR methods, respectively. RESULTS: Acute inflammation or remission (3 or 7 days after TNBS administration, respectively) stages of experimentally induced CD were characterized by an increase in the level of inflammatory markers (IL-1, IL-6, IL-10, IL-12, TNF-α, CRP, MPO, COX, and PGE2) and the disruption of some cytokine signaling pathways as well as macro- and microscopic changes of colon tissue. The consumption of oat beta-glucans reduced the level of inflammatory markers and recovered the signaling pathways and histological changes, with stronger effects of ßGl after 7 days of colitis. CONCLUSIONS: Dietary oat beta-glucans can reduce colitis at the molecular and organ level and accelerate CD remission.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Avena/chemistry , Crohn Disease/drug therapy , beta-Glucans/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Biomarkers/metabolism , Body Weight/drug effects , Carrier Proteins/metabolism , Colon/drug effects , Colon/metabolism , Colon/pathology , Crohn Disease/etiology , Crohn Disease/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Male , Rats, Sprague-Dawley , beta-Glucans/chemistry
14.
Antioxidants (Basel) ; 9(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365955

ABSTRACT

Background: Oat beta-glucans are polysaccharides, belonging to soluble fiber fraction, that show a wide spectrum of biological activity. The aim of this study was to evaluate the time-dependent antioxidative effect of chemically pure oat beta-glucan fractions, characterized by different molar mass, which were fed to animals with early stage of 2,4,6-trinitrobenzene sulfonic acid (TNBS) - induced colitis. Methods: The study was conducted on 150 adult male Sprague Dawley rats assigned to two groups-healthy control (H) and colitis (C) with colon inflammation induced by per rectum administration of TNBS. The animals from both groups were divided into 3 nutritional subgroups, receiving for 3, 7 or 21 days AIN-93M feed without beta-glucan (ßG-) or with 1% (w/w) low molar mass oat beta-glucan (ßGl+) or 1% (w/w) high molar mass oat beta-glucan (ßGh+). After 3, 7 and 21 days, the animals were euthanized, peripheral blood was collected from the heart for further analysis. Results: The results of analyses performed on blood samples showed small changes in lymphocytes count and red blood cell parameters such as the number of red blood cell, mean corpuscular hemoglobin concentration and mean corpuscular volume (RBC, MCHC, MCV respectively) as well as normalization of antioxidant potential accompanying moderate inflammatory state of colon mucosa and submucosa. Conclusion: Oat beta-glucans exert an indirect antioxidant effect in animals with TNBS-induced colitis, with greater effectiveness in removing systemic effects of colon inflammation found for low molar mass oat beta-glucan.

15.
Molecules ; 24(19)2019 Oct 05.
Article in English | MEDLINE | ID: mdl-31590413

ABSTRACT

BACKGROUND: Inflammatory bowel diseases are an important health problem. Therefore, the aim of the present study was to compare the impact of isolated oat beta-glucan fractions of low and high molecular weight, taken as dietary supplementation, on inflammatory markers in the colitis model. METHODS: Two groups of Sprague-Dawley rats-control and with experimentally induced colitis-were subsequently divided into three subgroups and fed over 21 days feed supplemented with 1% of low (ßGl) or high (ßGh) molecular weight oat beta-glucan fraction or feed without supplementation. The level of colon inflammatory markers, cytokines, and their receptors' genes expressions and immune cells numbers were measured by ELISA, RT-PCR, and by flow cytometry methods, respectively. RESULTS: The results showed moderate inflammation affecting the colon mucosa and submucosa, with significant changes in the number of lymphocytes in the colon tissue, elevated cytokines and eicosanoid levels, as well as disruption of the main cytokine and chemokine cell signaling pathways in colitis rats. Beta-glucans supplementation caused a reverse in the percentage of lymphocytes with stronger effects of ßGh and reduction of the levels of the inflammatory markers, and improvement of cytokine and chemokine signaling pathways with stronger effects of ßGl supplementation. CONCLUSIONS: The results indicate the therapeutic effect of dietary oat beta-glucan supplementation in the colitis in evident relation to the molecular weight of polymer.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Avena/chemistry , Colitis/diet therapy , Trinitrobenzenesulfonic Acid/adverse effects , beta-Glucans/administration & dosage , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/genetics , Colitis/immunology , Cytokines/genetics , Cytokines/metabolism , Dietary Supplements , Disease Models, Animal , Gene Expression Regulation/drug effects , Lymphocyte Count , Male , Molecular Weight , Rats , Rats, Sprague-Dawley , beta-Glucans/chemistry , beta-Glucans/pharmacology
16.
Environ Toxicol Pharmacol ; 67: 8-20, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30685595

ABSTRACT

Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.


Subject(s)
Air Pollutants/toxicity , Biofuels , Lung/drug effects , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Male , Rats, Inbred F344
17.
Eur J Nutr ; 58(7): 2859-2873, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30284595

ABSTRACT

PURPOSE: Beta-glucans are biologically active polysaccharides having antioxidant, immunomodulatory, and antiinflammatory properties. This study investigated the transcriptomic profile in peripheral blood of rats with LPS-induced enteritis, which were fed a diet supplemented with high- (G1) and low- (G2) molecular-weight oat beta-glucans. METHODS: Two-color rat gene expression microarrays were applied and the analysis was performed using a common reference design to provide easy means of comparing samples from various experimental conditions against one another. Common reference sample was labeled with cyanine 3 (Cy3) and investigated samples from each experimental group: C-G0 (control group fed semi-synthetic diet), LPS-G0 (LPS-challenged group fed semi-synthetic diet), LPS-G1 (LPS-challenged group fed G1 beta-glucan enriched diet), and LPS-G2 (LPS-challenged group fed G2 beta-glucan enriched diet) were labeled with cyanine 5 (Cy5). Each microarray was performed in quadruplicate. Statistical analysis was performed using one-way ANOVA and Tukey's HSD post-hoc test (p < 0.05). A multiple testing correction was performed using Benjamini and Hochberg False Discovery Rate < 5%. A quantitative real-time RT-PCR was performed to verify the expression of chosen transcripts. RESULTS: The microarray analyses revealed differentially expressed transcripts between: the LPS-G0 and the control groups: C-G0 (138 genes), the LPS-G1 and LPS-G0 groups (533 genes), and the LPS-G2 and LPS-G0 groups (97 genes). Several differentially expressed genes in the beta-glucan-supplemented groups encoded proteins belonging to TLR and NLR signaling pathways, as well as prostaglandin synthesis and regulation pathways. Both beta-glucans up-regulated the expression of Atg10, which belongs to the family of autophagy-related genes, suggesting a possible link between autophagy induction and beta-glucan supplementation. CONCLUSION: The changes in gene expression observed in the peripheral blood indicate that oat beta-glucans exerted a protective effect in rats with an induced inflammatory state caused by LPS challenge. The greater number of differentially expressed genes was observed in group supplemented with G1 beta-glucan, pointing at the differences in the mode of action of high- and low-molecular-weight beta-glucans in the organism.


Subject(s)
Avena , Enteritis/immunology , Gene Expression Regulation/drug effects , beta-Glucans/pharmacokinetics , Administration, Oral , Animal Feed , Animals , Disease Models, Animal , Enteritis/blood , Enteritis/diet therapy , Gene Expression Regulation/immunology , Immunity , Lipopolysaccharides , Male , Molecular Weight , Rats , Rats, Sprague-Dawley , beta-Glucans/administration & dosage , beta-Glucans/blood
18.
Inhal Toxicol ; 30(7-8): 299-312, 2018.
Article in English | MEDLINE | ID: mdl-30569778

ABSTRACT

While the impact of emissions from combustion of fossil fuel on human health has been extensively studied, current knowledge of exhaust exposure from combustion of biofuels provides limited and inconsistent information about its neurotoxicity. The objective of the present work was to compare the gene expression patterns in rat frontal cortex and hippocampus after exposure to diesel exhaust emissions (DEE) from combustion of two 1st generation fuels, 7% fatty acid methyl esters (FAME) (B7) and 20% FAME (B20), and a 2nd generation 20% FAME/hydrotreated vegetable oil (SHB20: synthetic hydrocarbon biofuel), with and without diesel particulate filter (DPF). The Fisher 344 rats (n = 7/treatment) were exposed to DEE for 7 days (6h/day), and for 28 days (6h/day, 5 days/week) in whole body exposure chambers. The controls were breathing room air. Brain histological examinations did not reveal any adverse exposure-related effects of DEE in frontal cortex or in hippocampus. Gene expression analysis showed that several genes associated with antioxidant defenses and inflammation were statistically differently expressed in DEE exposed animals versus control. In addition, the gene expression changes between the exposure groups were compared, where the observed rank order in frontal cortex was B7 > B20 > SHB20 after 7 days of exposure, and SHB20 > B7 = B20 after 28 days of exposure. In the hippocampus, the rank order was B7 > SHB20 > B20. Effect of DPF treatment was observed for Tnf only. Overall, moderate increases in bio-components in diesel blends do not appear to result in dramatic alterations in gene expression or adverse histopathological effects.


Subject(s)
Biofuels/toxicity , Frontal Lobe/drug effects , Gene Expression/drug effects , Hippocampus/drug effects , Inhalation Exposure/adverse effects , Vehicle Emissions/toxicity , Animals , Biofuels/analysis , Dose-Response Relationship, Drug , Frontal Lobe/metabolism , Frontal Lobe/pathology , Hippocampus/metabolism , Hippocampus/pathology , Male , Rats, Inbred F344 , Vehicle Emissions/analysis
19.
Inhal Toxicol ; 29(5): 206-218, 2017 04.
Article in English | MEDLINE | ID: mdl-28714748

ABSTRACT

Increased use of biofuels raises concerns about health effects of new emissions. We analyzed relative lung health effects, on Fisher 344 rats, of diesel engine exhausts emissions (DEE) from a Euro 5-classified diesel engine running on petrodiesel fuel containing 20% rapeseed methyl esters (B20) with and without diesel particulate filter (DPF). One group of animals was exposed to DEE for 7 days (6 h/day), and another group for 28 days (6 h/day, 5 days/week), both with and without DPF. The animals (n = 7/treatment) were exposed in whole body exposure chambers. Animals breathing clean air were used as controls. Genotoxic effects of the lungs by the Comet assay, histological examination of lung tissue, bronchoalveolar lavage fluid (BALF) markers of pulmonary injury, and mRNA markers of inflammation and oxidative stress were analyzed. Our results showed that a minor number of genes related to inflammation were slightly differently expressed in the exposed animals compared to control. Histological analysis also revealed only minor effects on inflammatory tissue markers in the lungs, and this was supported by flow cytometry and ELISA analysis of cytokines in BALF. No exposure-related indications of genotoxicity were observed. Overall, exposure to DEE with or without DPF technology produced no adverse effects in the endpoints analyzed in the rat lung tissue or the BALF. Overall, exposure to DEE from a modern Euro 5 light vehicle engine run on B20 fuel with or without DPF technology produced no adverse effects in the endpoints analyzed in the rat lung tissue or the BALF.


Subject(s)
Air Pollutants/chemistry , Air Pollutants/toxicity , Biofuels/analysis , Brassica rapa/chemistry , Filtration/instrumentation , Gasoline/analysis , Animals , Bronchoalveolar Lavage , Cytokines/genetics , Cytokines/metabolism , Drug Administration Schedule , Gene Expression Regulation/drug effects , Lung/drug effects , Lung/pathology , Lung Diseases/chemically induced , Male , Particulate Matter , Rats , Rats, Inbred F344
20.
Cent Eur J Immunol ; 42(1): 17-23, 2017.
Article in English | MEDLINE | ID: mdl-28680327

ABSTRACT

Angiogenesis plays an important role in many physiological processes, among them the formation of tissues and organs during embryogenesis. A lot of medicinal plants exhibit angiomodulatory properties. This creates the need for a thorough check of whether the plant extracts that we would like to give to pregnant women in order to increase their resistance to bacterial or viral infection will have negative effects on angiogenesis, and consequently on fetal development. This paper seeks to investigate the effect of serum of pregnant and nursing Balb/c mice that received aqueous (RKW) or hydro-alcoholic (RKW-A) R. kirilowii extracts (20 mg/kg), or epigallocatechin (0.2 mg/kg), on the in vitro proliferation and migration of mouse endothelial cell line Heca10. Of the 15 identified polyphenols in the extracts by HPLC, 8 were present in the sera. Chemical analysis revealed higher salidroside, kaempferol, chlorogenic acid, bFGF and VEGF concentration in RKW-A sera than in the sera of RKW group of mice. RKW-A and EGC sera did not affect migration of endothelial cells, however we noted some increase of migrating cells after RKW-sera treatment. RKW and EGC sera did not affect proliferation of endothelial cells. Sera of mothers from RKW-A group impaired the proliferation of endothelial cells in comparison to other groups. These data allow us to assume that Rhodiola kirilowii hydro-alcoholic extract (RKW-A) is potentially able to modulate pre- and post- natal angiogenesis what might influence the development of organs in progeny. Sera of RKW mothers have not harm the proliferation of endothelial cells, despite they also contain antiangiogenic catechins and salidroside. This suggests the existence in RKW-A extract and in RKW-A sera of some other, as yet unidentified substances influencing endothelial cells proliferation.

SELECTION OF CITATIONS
SEARCH DETAIL
...