Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Br J Haematol ; 203(4): 614-624, 2023 11.
Article in English | MEDLINE | ID: mdl-37699574

ABSTRACT

Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.


Subject(s)
Multiple Myeloma , Peroxidase , Tumor Microenvironment , Animals , Mice , Bone Marrow/pathology , Disease Models, Animal , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Myeloid Cells/pathology , Peroxidase/metabolism
2.
Sci Rep ; 12(1): 13128, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35908046

ABSTRACT

Multiple myeloma (MM) is an incurable haematological malignancy, caused by the uncontrolled proliferation of plasma cells within the bone marrow (BM). Obesity is a known risk factor for MM, however, few studies have investigated the potential of dietary intervention to prevent MM progression. Calorie restriction (CR) is associated with many health benefits including reduced cancer incidence and progression. To investigate if CR could reduce MM progression, dietary regimes [30% CR, normal chow diet (NCD), or high fat diet (HFD)] were initiated in C57BL/6J mice. Diet-induced changes were assessed, followed by inoculation of mice with Vk*MYC MM cells (Vk14451-GFP) at 16 weeks of age. Tumour progression was monitored by serum paraprotein, and at endpoint, BM and splenic tumour burden was analysed by flow cytometry. 30% CR promoted weight loss, improved glucose tolerance, increased BM adiposity and elevated serum adiponectin compared to NCD-fed mice. Despite these metabolic changes, CR had no significant effect on serum paraprotein levels. Furthermore, endpoint analysis found that dietary changes were insufficient to affect BM tumour burden, however, HFD resulted in an average two-fold increase in splenic tumour burden. Overall, these findings suggest diet-induced BM changes may not be key drivers of MM progression in the Vk14451-GFP transplant model of myeloma.


Subject(s)
Bone Marrow Neoplasms , Multiple Myeloma , Noncommunicable Diseases , Splenic Neoplasms , Animals , Caloric Restriction/methods , Diet, High-Fat , Mice , Mice, Inbred C57BL , Multiple Myeloma/complications , Obesity/metabolism , Paraproteins
3.
Br J Haematol ; 193(1): 171-175, 2021 04.
Article in English | MEDLINE | ID: mdl-33620089

ABSTRACT

Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identify B-ALL blast-secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two-gene expression signature (CKLF and IL1B) that allowed identification of high-risk patients at diagnosis. This two-gene expression signature enhances the predictive value of current at diagnosis or end-of-induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk-adapted therapies.


Subject(s)
Chemokines/genetics , Interleukin-1beta/genetics , MARVEL Domain-Containing Proteins/genetics , Machine Learning/statistics & numerical data , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Acute Disease , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Predictive Value of Tests , Recurrence , Risk Assessment/standards , Survival Analysis , Transcriptome/genetics , Treatment Failure
4.
Blood ; 116(8): 1329-35, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20462961

ABSTRACT

It is not clear if absence of BCR-ABL transcripts--complete molecular response (CMR)--is synonymous with, or required for, cure of chronic myeloid leukemia (CML). Some patients achieve CMR with imatinib (IM), but most relapse shortly after treatment discontinuation. Furthermore, most patients in long-term remission (LTR) post-stem cell transplantation (SCT) are considered functionally cured, although some remain occasionally positive for low-level BCR-ABL mRNA. Interpretation of the latter is complicated because it has been observed in healthy subjects. We designed a patient-specific, highly sensitive, DNA quantitative polymerase chain reaction to test follow-up samples for the original leukemic clone, identified by its unique genomic BCR-ABL fusion (gBCR-ABL). In 5 IM-treated patients in CMR, gBCR-ABL was detected in transcript-negative samples; 4 patients became gBCR-ABL-negative with continuing IM therapy. In contrast, of 9 patients in LTR (13-27 years) post-SCT, gBCR-ABL was detected in only 1, despite occasional transcript-positive samples in 8 of them. In conclusion, in IM-treated patients, absence of transcripts should not be interpreted as absence of the leukemic clone, although continuing IM after achievement of CMR may lead to further reduction of residual disease. Post-SCT, we found little evidence that the transcripts occasionally detected originate from the leukemic clone.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Neoplasm Recurrence, Local/therapy , Neoplasm, Residual/therapy , Piperazines/therapeutic use , Pyrimidines/therapeutic use , Stem Cell Transplantation , Adult , Benzamides , Combined Modality Therapy , Female , Fusion Proteins, bcr-abl/genetics , Graft vs Host Disease/genetics , Graft vs Host Disease/prevention & control , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Male , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , RNA, Messenger/genetics , Remission Induction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Young Adult
5.
J Mol Diagn ; 11(3): 201-10, 2009 May.
Article in English | MEDLINE | ID: mdl-19324989

ABSTRACT

A sensitive and specific quantitative real-time polymerase chain reaction method, involving three rounds of amplification with two allele-specific oligonucleotide primers directed against an rearrangement, was developed to quantify minimal residual disease (MRD) in B-lineage acute lymphoblastic leukemia (ALL). For a single sample containing 10 microg of good quality DNA, MRD was quantifiable down to approximately 10(-6), which is at least 1 log more sensitive than current methods. Nonspecific amplification was rarely observed. The standard deviation of laboratory estimations was 0.32 log units at moderate or high levels of MRD, but increased markedly as the level of MRD and the number of intact marker gene rearrangements in the sample fell. In 23 children with ALL studied after induction therapy, the mean MRD level was 1.6 x 10(-5) and levels ranged from 1.5 x 10(-2) to less than 10(-7). Comparisons with the conventional one-round quantitative polymerase chain reaction method on 29 samples from another 24 children who received treatment resulted in concordant results for 22 samples and discordant results for seven samples. The sensitivity and specificity of the method are due to the use of nested polymerase chain reaction, one segment-specific and two allele-specific oligonucleotide primers, and the use of a large amount of good quality DNA. This method may improve MRD-based decisions on treatment for ALL patients, and the principles should be applicable to DNA-based MRD measurements in other disorders.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Child , DNA, Neoplasm/analysis , Fluorescence , Humans , Neoplasm, Residual , Polymerase Chain Reaction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Sensitivity and Specificity
6.
J Mol Diagn ; 11(3): 194-200, 2009 May.
Article in English | MEDLINE | ID: mdl-19324994

ABSTRACT

Molecular markers for minimal residual disease in B-lineage acute lymphoblastic leukemia were identified by determining, at the time of diagnosis, the repertoire of rearrangements of the immunoglobulin heavy chain (IGH) gene using segment-specific variable (V), diversity (D), and junctional (J) primers in two different studies that involved a total study population of 75 children and 18 adults. This strategy, termed repertoire analysis, was compared with the conventional strategy of identifying markers using family-specific V, D, and J primers for a variety of antigen receptor genes. Repertoire analysis detected significantly more markers for the major leukemic clone than did the conventional strategy, and one or more IgH rearrangements that were suitable for monitoring the major clone were detected in 96% of children and 94% of adults. Repertoire analysis also detected significantly more IGH markers for minor clones. Some minor clones were quite large and a proportion of them would not be able to be detected by a minimal residual disease test directed to the marker for the major clone. IGH repertoire analysis at diagnosis has potential advantages for the identification of molecular markers for the quantification of minimal residual disease in acute lymphoblastic leukemia cases. An IGH marker enables very sensitive quantification of the major leukemic clone, and the detection of minor clones may enable early identification of additional patients who are prone to relapse.


Subject(s)
Cell Lineage , Gene Rearrangement, B-Lymphocyte , Immunoglobulin Heavy Chains/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adult , Child , Cooperative Behavior , DNA, Neoplasm/genetics , Genetic Markers , Genome, Human/genetics , Humans , Neoplasm, Residual/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...