Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pain ; 122016.
Article in English | MEDLINE | ID: mdl-27899696

ABSTRACT

The transient receptor potential ankyrin 1 (TRPA1) channel has been implicated in pathophysiological processes that include asthma, cough, and inflammatory pain. Agonists of TRPA1 such as mustard oil and its key component allyl isothiocyanate (AITC) cause pain and neurogenic inflammation in humans and rodents, and TRPA1 antagonists have been reported to be effective in rodent models of pain. In our pursuit of TRPA1 antagonists as potential therapeutics, we generated AMG0902, a potent (IC90 of 300 nM against rat TRPA1), selective, brain penetrant (brain to plasma ratio of 0.2), and orally bioavailable small molecule TRPA1 antagonist. AMG0902 reduced mechanically evoked C-fiber action potential firing in a skin-nerve preparation from mice previously injected with complete Freund's adjuvant, supporting the role of TRPA1 in inflammatory mechanosensation. In vivo target coverage of TRPA1 by AMG0902 was demonstrated by the prevention of AITC-induced flinching/licking in rats. However, oral administration of AMG0902 to rats resulted in little to no efficacy in models of inflammatory, mechanically evoked hypersensitivity; and no efficacy was observed in a neuropathic pain model. Unbound plasma concentrations achieved in pain models were about 4-fold higher than the IC90 concentration in the AITC target coverage model, suggesting that either greater target coverage is required for efficacy in the pain models studied or TRPA1 may not contribute significantly to the underlying mechanisms.


Subject(s)
Hyperalgesia/metabolism , Inflammation/complications , Sciatica/complications , TRPC Cation Channels/metabolism , Action Potentials/drug effects , Action Potentials/genetics , Amines/therapeutic use , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , CHO Cells , Cricetulus , Cyclohexanecarboxylic Acids/therapeutic use , Exploratory Behavior/drug effects , Freund's Adjuvant/toxicity , Gabapentin , Hyperalgesia/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Male , Mice, Inbred C57BL , Mice, Knockout , Naproxen/pharmacology , Nerve Fibers, Unmyelinated/drug effects , Nerve Fibers, Unmyelinated/physiology , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , Sciatica/drug therapy , TRPA1 Cation Channel , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , gamma-Aminobutyric Acid/therapeutic use
2.
J Pharmacol Exp Ther ; 356(1): 223-31, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26559125

ABSTRACT

Therapeutic agents that block the calcitonin gene-related peptide (CGRP) signaling pathway are a highly anticipated and promising new drug class for migraine therapy, especially after reports that small-molecule CGRP-receptor antagonists are efficacious for both acute migraine treatment and migraine prevention. Using XenoMouse technology, we successfully generated AMG 334, a fully human monoclonal antibody against the CGRP receptor. Here we show that AMG 334 competes with [(125)I]-CGRP binding to the human CGRP receptor, with a Ki of 0.02 nM. AMG 334 fully inhibited CGRP-stimulated cAMP production with an IC50 of 2.3 nM in cell-based functional assays (human CGRP receptor) and was 5000-fold more selective for the CGRP receptor than other human calcitonin family receptors, including adrenomedullin, calcitonin, and amylin receptors. The potency of AMG 334 at the cynomolgus monkey (cyno) CGRP receptor was similar to that at the human receptor, with an IC50 of 5.7 nM, but its potency at dog, rabbit, and rat receptors was significantly reduced (>5000-fold). Therefore, in vivo target coverage of AMG 334 was assessed in cynos using the capsaicin-induced increase in dermal blood flow model. AMG 334 dose-dependently prevented capsaicin-induced increases in dermal blood flow on days 2 and 4 postdosing. These results indicate AMG 334 is a potent, selective, full antagonist of the CGRP receptor and show in vivo dose-dependent target coverage in cynos. AMG 334 is currently in clinical development for the prevention of migraine.


Subject(s)
Antibodies, Monoclonal/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists , Animals , Antibodies, Monoclonal, Humanized , Binding, Competitive/drug effects , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/pharmacology , Cyclic AMP/biosynthesis , Dogs , Dose-Response Relationship, Drug , Humans , Macaca fascicularis , Mice , Migraine Disorders/prevention & control , Rabbits , Rats , Receptors, Calcitonin/drug effects , Receptors, Calcitonin/metabolism , Regional Blood Flow/drug effects , Skin/blood supply
3.
Naunyn Schmiedebergs Arch Pharmacol ; 388(4): 465-76, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25662185

ABSTRACT

TRPM8 has been implicated in pain and migraine based on dorsal root- and trigeminal ganglion-enriched expression, upregulation in preclinical models of pain, knockout mouse studies, and human genetics. Here, we evaluated the therapeutic potential in pain of AMG2850 ((R)-8-(4-(trifluoromethyl)phenyl)-N-((S)-1,1,1-trifluoropropan-2-yl)-5,6-dihydro-1,7-naphthyridine-7(8H)-carboxamide), a small molecule antagonist of TRPM8 by in vitro and in vivo characterization. AMG2850 is potent in vitro at rat TRPM8 (IC90 against icilin activation of 204 ± 28 nM), highly selective (>100-fold IC90 over TRPV1 and TRPA1 channels), and orally bioavailable (F po > 40 %). When tested in a skin-nerve preparation, AMG2850 blocked menthol-induced action potentials but not mechanical activation in C fibers. AMG2850 exhibited significant target coverage in vivo in a TRPM8-mediated icilin-induced wet-dog shake (WDS) model in rats (at 10 mg/kg p.o.). However, AMG2850 did not produce a significant therapeutic effect in rat models of inflammatory mechanical hypersensitivity or neuropathic tactile allodynia at doses up to 100 mg/kg. The lack of efficacy suggests that either TRPM8 does not play a role in mediating pain in these models or that a higher level of target coverage is required. The potential of TRPM8 antagonists as migraine therapeutics is yet to be determined.


Subject(s)
Hyperalgesia/drug therapy , Naphthyridines/pharmacology , Naphthyridines/therapeutic use , TRPM Cation Channels/antagonists & inhibitors , Action Potentials/drug effects , Animals , Behavior, Animal/drug effects , Blood Pressure/drug effects , Brain/metabolism , CHO Cells , Calcium/metabolism , Cold Temperature , Cricetinae , Cricetulus , Freund's Adjuvant , Humans , Male , Menthol/pharmacology , Mice, Inbred C57BL , Pain/drug therapy , Pyrimidinones , Rats , Rats, Sprague-Dawley , Sciatic Nerve/injuries
4.
Anesthesiology ; 110(1): 140-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19104181

ABSTRACT

BACKGROUND: Previous studies have demonstrated that nerve growth factor (NGF) is an important mediator of pathologic pain. Many studies have focused on cutaneous mechanisms for NGF-induced hyperalgesia; few have examined its contribution in deeper tissues like muscle. This study examined pain behaviors and the expression of NGF in incised hind paw flexor digitorum brevis muscle. METHODS: Adult Sprague-Dawley rats were pretreated with anti-NGF peptibody and underwent skin or skin plus deep fascia and muscle incision. Guarding pain behaviors were measured. Muscle NGF messenger RNA (mRNA) was measured by reverse-transcriptase polymerase chain reaction. Changes in NGF protein expression were measured using Western blot, enzyme-linked immunosorbent assay, and immunohistochemistry. In situ hybridization for NGF mRNA was also performed. RESULTS: Pretreatment with anti-NGF peptibody (100 mg/kg) decreased the guarding behavior caused by deep fascia and muscle incision. Muscle NGF mRNA increased abruptly 2 h after incision and was the same as control by postoperative day 1. NGF protein increased from 4 h after incision and was sustained for several days. NGF was localized in many calcitonin gene-related peptide-positive axons, few N52-positive axons, but not isolectin B4-positive axons in incised muscle. The sources of NGF mRNA included keratinocytes in epidermis and fibroblasts in deeper tissues. CONCLUSION: Fibroblasts adjacent to the injury are sources of NGF in incised muscle. NGF is upregulated by incision of muscle and contributes to guarding pain behavior.


Subject(s)
Gene Expression Profiling/methods , Muscle, Skeletal/physiology , Nerve Growth Factor/biosynthesis , Nerve Growth Factor/genetics , Pain Measurement/methods , Animals , Male , Muscle, Skeletal/injuries , Nerve Growth Factor/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Time Factors
5.
J Pharmacol Exp Ther ; 322(1): 282-7, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17431136

ABSTRACT

A considerable body of evidence implicates endogenous nerve growth factor (NGF) in conditions in which pain is a prominent feature, including neuropathic pain. However, previous studies of NGF antagonism in animal models of neuropathic pain have examined only the prevention of hyperalgesia and allodynia after injury, whereas the more relevant issue is whether treatment can provide relief of established pain, particularly without tolerance. In the current work, we studied the effects of potent, neutralizing anti-NGF antibodies on the reversal of tactile allodynia and thermal hyperalgesia in established models of neuropathic and inflammatory pain in rats and mice. In the complete Freund's adjuvant-induced hind-paw inflammation, spinal nerve ligation and streptozotocin-induced neuropathic pain models, a single intraperitoneal injection of a polyclonal anti-NGF antibody reversed established tactile allodynia from approximately day 3 to day 7 after treatment. Effects on thermal hyperalgesia were variable with a significant effect observed only in the spinal nerve ligation model. In the mouse chronic constriction injury (CCI) model, a mouse monoclonal anti-NGF antibody reversed tactile allodynia when administered 2 weeks after surgery. Repeated administration of this antibody to CCI mice for 3 weeks produced a sustained reversal (days 4 to 21) of tactile allodynia that returned 5 days after the end of dosing. In conclusion, NGF seems to play a critical role in models of established neuropathic and inflammatory pain in both rats and mice, with no development of tolerance to antagonism. Antagonists of NGF, such as fully human monoclonal anti-NGF antibodies, may have therapeutic utility in analogous human pain conditions.


Subject(s)
Antibodies/therapeutic use , Disease Models, Animal , Hyperalgesia/drug therapy , Nerve Growth Factor/antagonists & inhibitors , Animals , Brain-Derived Neurotrophic Factor/physiology , Drug Tolerance , Humans , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factor/physiology , Rats , Rats, Sprague-Dawley
6.
Mol Pharmacol ; 68(6): 1524-33, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16135784

ABSTRACT

Vanilloid receptor 1 (TRPV1) is activated by chemical ligands (e.g., capsaicin and protons) and heat. In this study, we show that (2E)-3-[2-piperidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]-N-quinolin-7-ylacrylamide (AMG6880), 5-chloro-6-[(3R)-3-methyl-4-[6-(trifluoromethyl)-4-(3,4,5-trifluorophenyl)-1H-benzimidazol-2-yl]piperazin-1-yl]pyridin-3-yl)methanol (AMG7472), and N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide (BCTC) are potent antagonists of rat TRPV1 activation by either capsaicin or protons (pH 5) (defined here as group A antagonists), whereas (2E)-3-(6-tert-butyl-2-methylpyridin-3-yl)-N-(1H-indol-6-yl)acrylamide (AMG0610), capsazepine, and (2E)-3-(4-chlorophenyl)-N-(3-methoxyphenyl)acrylamide (SB-366791) are antagonists of capsaicin, but not proton, activation (defined here as group B antagonists). By using capsaicin-sensitive and insensitive rabbit TRPV1 channels, we show that antagonists require the same critical molecular determinants located in the transmembrane domain 3/4 region to block both capsaicin and proton activation, suggesting the presence of a single binding pocket. To determine whether the differential pharmacology is a result of proton activation-induced conformational changes in the capsaicin-binding pocket that alter group B antagonist affinities, we have developed a functional antagonist competition assay. We hypothesized that if group B antagonists bind at the same or an overlapping binding pocket of TRPV1 as group A antagonists, and proton activation does not alter the binding pocket, then group B antagonists should compete with and prevent group A antagonism of TRPV1 activation by protons. Indeed, we found that each of the group B antagonists competed with and prevented BCTC, AMG6880 or AMG7472 antagonism of rat TRPV1 activation by protons with pA2 values similar to those for blocking capsaicin, indicating that proton activation does not alter the conformation of the TRPV1 capsaicin-binding pocket. In conclusion, group A antagonists seem to lock the channel conformation in the closed state, blocking both capsaicin and proton activation.


Subject(s)
Capsaicin/antagonists & inhibitors , Protons , TRPV Cation Channels/antagonists & inhibitors , Animals , Binding Sites , Capsaicin/pharmacology , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Protein Binding , Protein Conformation/drug effects , Pyrazines/pharmacology , Pyridines/pharmacology , Rabbits , Rats , TRPV Cation Channels/chemistry
7.
J Pharmacol Exp Ther ; 313(1): 474-84, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15615864

ABSTRACT

The vanilloid receptor 1 (VR1 or TRPV1) is a membrane-bound, nonselective cation channel expressed by peripheral sensory neurons. TRPV1 antagonists produce antihyperalgesic effects in animal models of inflammatory and neuropathic pain. Here, we describe the in vitro and in vivo pharmacology of a novel TRPV1 antagonist, AMG 9810, (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide. AMG 9810 is a competitive antagonist of capsaicin activation (IC50 value for human TRPV1, 24.5 +/- 15.7 nM; rat TRPV1, 85.6 +/- 39.4 nM) and blocks all known modes of TRPV1 activation, including protons (IC50 value for rat TRPV1, 294 +/- 192 nM; human TRPV1, 92.7 +/- 72.8 nM), heat (IC50 value for rat TRPV1, 21 +/- 17 nM; human TRPV1, 15.8 +/- 10.8 nM), and endogenous ligands, such as anandamide, N-arachidonyl dopamine, and oleoyldopamine. AMG 9810 blocks capsaicin-evoked depolarization and calcitonin gene-related peptide release in cultures of rat dorsal root ganglion primary neurons. Screening of AMG 9810 against a panel of G protein-coupled receptors and ion channels indicated selectivity toward TRPV1. In vivo, AMG 9810 is effective at preventing capsaicin-induced eye wiping in a dose-dependent manner, and it reverses thermal and mechanical hyperalgesia in a model of inflammatory pain induced by intraplantar injection of complete Freund's adjuvant. At effective doses, AMG 9810 did not show any significant effects on motor function, as measured by open field locomotor activity and motor coordination tests. AMG 9810 is the first cinnamide TRPV1 antagonist reported to block capsaicin-induced eye wiping behavior and reverse hyperalgesia in an animal model of inflammatory pain.


Subject(s)
Acrylamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Hyperalgesia/drug therapy , Receptors, Drug/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , CHO Cells , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/antagonists & inhibitors , Cells, Cultured , Cricetinae , Freund's Adjuvant , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hot Temperature , Humans , Hyperalgesia/chemically induced , Inflammation/complications , Inflammation/pathology , Motor Activity/drug effects , Neurons/drug effects , Neurons/metabolism , Pain Measurement/drug effects , Patch-Clamp Techniques , Protons , Psychomotor Performance/drug effects , Rats , Rats, Sprague-Dawley , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...