Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888143

ABSTRACT

PURPOSE: To investigate the impact of reduced k-space sampling on B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and the resulting impact on phase shimming and dynamic/universal parallel transmit (pTx) RF pulse design. METHODS: Channel-wise 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were measured at 7 T in 35 and 23 healthy subjects for the heart and prostate region, respectively. With these B 1 + $$ {\mathrm{B}}_1^{+} $$ maps, universal phase shims optimizing homogeneity and B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency were designed for heart and prostate imaging. In addition, universal 4kT-point pulses were designed for the heart. Subsequently, individual phase shims and individual 4kT-pulses were designed based on B 1 + $$ {\mathrm{B}}_1^{+} $$ maps with different acceleration factors and tested on the original maps. The performance of the pulses was compared by evaluating their coefficients of variation (CoV), B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and specific energy doses (SED). Furthermore, validation measurements were carried out for one heart and one prostate subject. RESULTS: For both organs, the universal phase shims showed significantly higher B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and lower CoVs compared to the vendor provided default shim, but could still be improved with individual phase shims based on accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ maps (acquisition time = 30 s). In the heart, the universal 4kT-pulse achieved significantly lower CoVs than tailored phase shims. Tailored 4kT-pulses based on accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ maps resulted in even further reduced CoVs or a 2.5-fold reduction in SED at the same CoVs as the universal 4kT-pulse. CONCLUSION: Accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be used for the design of tailored pTx pulses for prostate and cardiac imaging at 7 T, which further improve homogeneity, B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency, or SED compared to universal pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...