Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Colloid Interface Sci ; 578: 106-115, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32521350

ABSTRACT

HYPOTHESIS: Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young's equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. THEORY AND EXPERIMENTS: We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. FINDINGS: We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.

2.
Environ Sci Technol ; 37(13): 3024-30, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12875410

ABSTRACT

Electro-osmosis, a coupled-flow phenomenon in which an applied electrical potential gradient drives water flow, may be used to induce water flow through fine-grained sediments. Test cell measurements of electro-osmotic transport in clayey cores extracted from the 27-31 m depth range of the Lawrence Livermore National Laboratory site indicate the importance of pH control within the anode and cathode reservoirs. In our first experiment, pH was not controlled. As a result, carbonate precipitation and metals precipitation occurred near the cathode end of the core, with acidification near the anode. The combination of these acid and base reactions led to the decline of electro-osmotic flow by a factor of 2 in less than one pore volume. In a second experiment, long-term water transport (>21 pore volumes) at stable electro-osmotic conductivity (k(eo) approximately 1 x 10(-9) m2/s-V) was effected with anode reservoir pH > 8, and cathode reservoir pH < 6. Hydraulic conductivity (k(h)) of the same core was 4 x 10(-10) m/s under a 0.07 MPa hydraulic gradient without electro-osmosis. Stable electro-osmotic flow was measured at a velocity of 4 x 10(-7) m/s under a 4 V/cm voltage gradient, and no hydraulic gradient-3 orders of magnitude greater than the hydraulic flow. We also observed chloroform production in the anode reservoir, resulting from electrochemical production of chlorine gas reacting with trace organics. The chloroform was transported electro-osmotically to the cathode, without measurable loss to adsorption, volatilization, or degradation.


Subject(s)
Chloroform/chemistry , Soil Pollutants/analysis , Solvents/chemistry , Chloroform/analysis , Electricity , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Osmosis , Permeability , Solvents/analysis , Volatilization , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL