Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 27(5): 1745-57, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21247189

ABSTRACT

The molecule 1,3:2,4-di-O-benzylidene sorbitol (DBS) is a common "gelator" that forms thermally reversible gels in diverse organic solvents. Solid-state (13)C and (1)H NMR techniques, along with electron microscopy, are utilized in an exploratory study of DBS in the gelled state where we consider both in situ and dried gels. The gels were formed in either acetone or benzene, with the former being a better solvent for DBS. We find the in situ or dried DBS gels to be composed of rigid twisted nanofibrils (∼15 to 21 nm in diameter). The fibrils show local molecular ordering, but not crystalline order, and they contain no trapped solvent. The molecular mobility at the fibril surface is modestly enhanced, and all the free hydroxyl groups of the sorbitol moiety are involved in strong hydrogen bonding. We also attempted to find a truly crystalline form of DBS whose structure, as judged by the similarity of (13)C spectra, is close to that of the fibrils. We partially succeeded in this quest, employing melt crystallization followed by slow cooling. However, this sample was a mixed crystal having small domains, where only one type of domain was structurally similar to the fibrils. We also investigated the long-time evolution of the in situ DBS gel network. Specifically, high-resolution NMR kinetic studies were performed over periods of days where the residual concentration of DBS in acetone solution was monitored during and after gel formation. The DBS concentration on these long timescales evolved slowly, and we introduce a simple mathematical model and equation to describe this phenomenon.

3.
J Colloid Interface Sci ; 267(2): 509-18, 2003 Nov 15.
Article in English | MEDLINE | ID: mdl-14583229

ABSTRACT

The 1,3:2,4-dibenzylidene-D-sorbitol (DBS) molecule is capable of self-organizing into nanoscale fibrils through intermolecular forces such as hydrogen bonding and pi interactions. At sufficiently high concentrations (typically less than approximately 2 wt%), the nanofibrils can form a network that promotes physical gelation of the matrix medium. Previous studies have investigated the mechanism of DBS-induced gelation and the features of DBS-containing gels in poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG). In this work, we examine the effect of adding DBS to a series of amphiphilic PPG-b-PEG-b-PPG triblock copolymers differing in composition and molecular weight. Dynamic rheological measurements reveal that the resultant gels are thermoreversible (i.e., they exhibit comparable mechanical properties before dissolution and after reformation under quiescent conditions), exhibiting a maximum in the elastic modulus (G') at temperatures near the gel dissolution (T(d)) and formation (T(f)) temperatures. Both T(d) and T(f) tend to increase with increasing DBS concentration and PPG content, and their difference decreases with increasing PPG fraction in the copolymer. The magnitude of G' is sensitive to copolymer composition and polymer identity at low DBS concentrations, but becomes polymer-independent as the DBS network saturates at concentrations in excess of approximately 1 wt%.


Subject(s)
Gels/chemical synthesis , Polymers/chemistry , Sorbitol/analogs & derivatives , Sorbitol/chemistry , Carbohydrate Conformation , Gels/chemistry , Hydrogen Bonding , Polyethylene Glycols/chemistry , Pressure , Propylene Glycols/chemistry , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...