Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis ; 19(6): 2, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31166580

ABSTRACT

People are able to perceive the 3D shape of illuminated surfaces using image shading cues. Theories about how we accomplish this often assume that the human visual system estimates a single lighting direction and interprets shading cues in accord with that estimate. In natural scenes, however, lighting can be much more complex than this, with multiple nearby light sources. Here we show that the human visual system can successfully judge 3D surface shape even when the lighting direction varies from place to place over a surface, provided the scale at which these lighting changes occur is similar to, or larger than, the size of the shape features being judged. Furthermore, we show that despite being able to accommodate rapid changes in lighting direction when judging shape, observers are generally unable to detect these changes. We conclude that, rather than relying on a single estimated illumination direction, the human visual system can accommodate illumination that varies substantially and rapidly across a surface.


Subject(s)
Form Perception/physiology , Lighting , Female , Humans , Imaging, Three-Dimensional , Male , Photic Stimulation/methods , Young Adult
2.
Vision Res ; 49(9): 1017-31, 2009 May.
Article in English | MEDLINE | ID: mdl-18649913

ABSTRACT

Visual attention and saccades are typically studied in artificial situations, with stimuli presented to the steadily fixating eye, or saccades made along specified paths. By contrast, in real-world tasks saccadic patterns are constrained only by the demands of the motivating task. We studied attention during pauses between saccades made to perform three free-viewing tasks: counting dots, pointing to the same dots with a visible cursor, or simply looking at the dots using a freely-chosen path. Attention was assessed by the ability to identify the orientation of a briefly-presented Gabor probe. All primary tasks produced losses in identification performance, with counting producing the largest losses, followed by pointing and then looking-only. Looking-only resulted in a 37% increase in contrast thresholds in the orientation task. Counting produced more severe losses that were not overcome by increasing Gabor contrast. Detection or localization of the Gabor, unlike identification, were largely unaffected by any of the primary tasks. Taken together, these results show that attention is required to control saccades, even with freely-chosen paths, but the attentional demands of saccades are less than those attached to tasks such as counting, which have a significant cognitive load. Counting proved to be a highly demanding task that either exhausted momentary processing capacity (e.g., working memory or executive functions), or, alternatively, encouraged a strategy of filtering out all signals irrelevant to counting itself. The fact that the attentional demands of saccades (as well as those of detection/localization) are relatively modest makes it possible to continually adjust both the spatial and temporal pattern of saccades so as to re-allocate attentional resources as needed to handle the complex and multifaceted demands of real-world environments.


Subject(s)
Attention/physiology , Pattern Recognition, Visual/physiology , Saccades/physiology , Contrast Sensitivity/physiology , Eye Movement Measurements , Humans , Orientation , Photic Stimulation/methods , Psychomotor Performance , Psychophysics , Sensory Thresholds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...