Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Front Immunol ; 12: 746503, 2021.
Article in English | MEDLINE | ID: mdl-34795667

ABSTRACT

Rheumatoid arthritis synovial fibroblasts (RASFs) contribute to synovial inflammation and bone destruction by producing a pleiotropic cytokine interleukin-6 (IL-6). However, the molecular mechanisms through which IL-6 propels RASFs to contribute to bone loss are not fully understood. In the present study, we investigated the effect of IL-6 and IL-6 receptor (IL-6/IL-6R)-induced trans-signaling in human RASFs. IL-6 trans-signaling caused a significant increase in tartrate-resistant acid phosphatase (TRAP)-positive staining in RASFs and enhanced pit formation by ~3-fold in the osteogenic surface in vitro. IL-6/IL-6R caused dose-dependent increase in expression and nuclear translocation of transcription factor Ets2, which correlated with the expression of osteoclast-specific signature proteins RANKL, cathepsin B (CTSB), and cathepsin K (CTSK) in RASFs. Chromatin immunoprecipitation (ChIP) analysis of CTSB and CTSK promoters showed direct Ets2 binding and transcriptional activation upon IL-6/IL-6R stimulation. Knockdown of Ets2 significantly inhibited IL-6/IL-6R-induced RANKL, CTSB, and CTSK expression and TRAP staining in RASFs and suppressed markers of RASF invasive phenotype such as Thy1 and podoplanin (PDPN). Mass spectrometry analysis of the secretome identified 113 proteins produced by RASFs uniquely in response to IL-6/IL-6R that bioinformatically predicted its impact on metabolic reprogramming towards an osteoclast-like phenotype. These findings identified the role of Ets2 in IL-6 trans-signaling induced molecular reprogramming of RASFs to osteoclast-like cells and may contribute to RASF heterogeneity.


Subject(s)
Arthritis, Rheumatoid/pathology , Cellular Reprogramming/physiology , Fibroblasts/metabolism , Interleukin-6/metabolism , Proto-Oncogene Protein c-ets-2/metabolism , Arthritis, Rheumatoid/metabolism , Humans , Osteoclasts/metabolism , Osteoclasts/pathology , Receptors, Interleukin-6/metabolism , Signal Transduction/physiology , Synovial Membrane/metabolism , Synovial Membrane/pathology
3.
Front Endocrinol (Lausanne) ; 12: 763392, 2021.
Article in English | MEDLINE | ID: mdl-35046892

ABSTRACT

Chromatin remodeling, specifically the tissue-specific regulation in mineralized tissues, is an understudied avenue of gene regulation. Here we show that Baf45a and Baf45d, two Baf45 homologs belong to ATPase-dependent SWI/SNF chromatin remodeling complex, preferentially expressed in osteoblasts and odontoblasts compared to Baf45b and Baf45c. Recently, biochemical studies revealed that BAF45A associates with Polybromo-associated BAF (PBAF) complex. However, the BAF45D subunit belongs to the polymorphic canonical BRG1-associated factor (cBAF) complex. Protein profiles of osteoblast and odontoblast differentiation uncovered a significant increase of BAF45A and PBAF subunits during early osteoblast and odontoblast maturation. Chromatin immunoprecipitation sequencing (ChIP-seq) during the bone marrow stromal cells (BMSCs) differentiation showed higher histone H3K9 and H3K27 acetylation modifications in the promoter of Baf45a and Baf45d and increased binding of bone and tooth specific transcription factor RUNX2. Overexpression of Baf45a in osteoblasts activates genes essential for the progression of osteoblast maturation and mineralization. Furthermore, shRNA-mediated knockdown of Baf45a in odontoblasts leads to markedly altered genes responsible for the proliferation, apoptosis, DNA repair, and modest decrease in dentinogenic marker gene expression. Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) assay in Baf45a knockout osteoblasts revealed a noticeable reduction in chromatin accessibility of osteoblast and odontoblast specific genes, along with transcription factor Atf4 and Klf4. Craniofacial mesenchyme-specific loss of Baf45a modestly reduced the mineralization of the tooth and mandibular bone. These findings indicated that BAF45A-dependent mineralized tissue-specific chromatin remodeling through PBAF-RUNX2 crosstalk results in transcriptional activation is critical for early differentiation and matrix maturation of mineralized tissues.


Subject(s)
Chromatin Assembly and Disassembly , Odontogenesis/genetics , Osteogenesis/genetics , Transcriptional Activation , Animals , Cells, Cultured , Female , Male , Mice, Transgenic
4.
Curr Mol Biol Rep ; 5(1): 55-64, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31289715

ABSTRACT

PURPOSE OF REVIEW-: Precise and temporal expression of Runx2 and its regulatory transcriptional network is a key determinant for the intricate cellular and developmental processes in adult bone tissue formation. This review analyzes how microRNA functions to regulate this network, and how dysregulation results in bone disorders. RECENT FINDINGS-: Similar to other biologic processes, microRNA (miRNA/miR) regulation is undeniably indispensable to bone synthesis and maintenance. There exists a miRNA-RUNX2 network where RUNX2 regulates the transcription of miRs, or is post transcriptionally regulated by a class of miRs, forming a variety of miR-RUNX2 regulatory pathways which regulate osteogenesis. SUMMARY-: The current review provides insights to understand transcriptional-post transcriptional regulatory network governed by Runx2 and osteogenic miRs, and is based largely from in vitro and in vivo studies. When taken together, this article discusses a new regulatory layer of bone tissue specific gene expression by RUNX2 influenced via miRNA.

5.
J Biol Chem ; 293(45): 17646-17660, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30242124

ABSTRACT

MicroRNAs (miRs) and Hox transcription factors have decisive roles in postnatal bone formation and homeostasis. In silico analysis identified extensive interaction between HOXA cluster mRNA and microRNAs from the miR-23a cluster. However, Hox regulation by the miR-23a cluster during osteoblast differentiation remains undefined. We examined this regulation in preosteoblasts and in a novel miR-23a cluster knockdown mouse model. Overexpression and knockdown of the miR-23a cluster in preosteoblasts decreased and increased, respectively, the expression of the proteins HOXA5, HOXA10, and HOXA11; these proteins' mRNAs exhibited significant binding with the miR-23a cluster miRNAs, and miRNA 3'-UTR reporter assays confirmed repression. Importantly, during periods correlating with development and differentiation of bone cells, we found an inverse pattern of expression between HoxA factors and members of the miR-23a cluster. HOXA5 and HOXA11 bound to bone-specific promoters, physically interacted with transcription factor RUNX2, and regulated bone-specific genes. Depletion of HOXA5 or HOXA11 in preosteoblasts also decreased cellular differentiation. Additionally, stable overexpression of the miR-23a cluster in osteoblasts decreased the recruitment of HOXA5 and HOXA11 to osteoblast gene promoters, significantly inhibiting histone H3 acetylation. Heterozygous miR-23a cluster knockdown female mice (miR-23a ClWT/ZIP) had significantly increased trabecular bone mass when compared with WT mice. Furthermore, miR-23a cluster knockdown in calvarial osteoblasts of these mice increased the recruitment of HOXA5 and HOXA11, with a substantial enrichment of promoter histone H3 acetylation. Taken together, these findings demonstrate that the miR-23a cluster is required for maintaining stage-specific HoxA factor expression during osteogenesis.


Subject(s)
3' Untranslated Regions , Cell Differentiation , Homeodomain Proteins/metabolism , MicroRNAs/metabolism , Multigene Family , Osteoblasts/metabolism , Phosphoproteins/metabolism , Acetylation , Animals , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , HEK293 Cells , Histones/genetics , Histones/metabolism , Homeodomain Proteins/genetics , Humans , Mice , MicroRNAs/genetics , Osteoblasts/cytology , Osteogenesis , Phosphoproteins/genetics , Transcription Factors
6.
Connect Tissue Res ; 59(sup1): 52-54, 2018 12.
Article in English | MEDLINE | ID: mdl-29745807

ABSTRACT

Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a ClZIP) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.


Subject(s)
Cell Differentiation/physiology , Epigenesis, Genetic/physiology , Osteoblasts/metabolism , Osteogenesis/physiology , Acetylation , Animals , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/genetics , Histones/metabolism , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/cytology
7.
Mol Cancer Res ; 16(7): 1138-1148, 2018 07.
Article in English | MEDLINE | ID: mdl-29592898

ABSTRACT

In multiple myeloma, abnormal plasma cells accumulate and proliferate in the bone marrow. Recently, we observed that Runx2, a bone-specific transcription factor, is highly expressed in multiple myeloma cells and is a major driver of multiple myeloma progression in bone. The primary goal of the present study was to identify Runx2-targeting miRNAs that can reduce tumor growth. Expression analysis of a panel of miRNAs in multiple myeloma patient specimens, compared with healthy control specimens, revealed that metastatic multiple myeloma cells express low levels of miR-342 and miR-363 but high levels of Runx2. Reconstituting multiple myeloma cells (CAG) with miR-342 and miR-363 reduced the abundance of Runx2 and the expression of metastasis-promoting Runx2 target genes RANKL and DKK1, and suppressed Runx2 downstream signaling pathways Akt/ß-catenin/survivin, which are required for multiple myeloma tumor progression. Intravenous injection of multiple myeloma cells (5TGM1), stably overexpressing miR-342 and miR-363 alone or together, into syngeneic C57Bl/KaLwRij mice resulted in a significant suppression of 5TGM1 cell growth, decreased osteoclasts and increased osteoblasts, and increased antitumor immunity in the bone marrow, compared with mice injected with 5TGM1 cells expressing a miR-Scramble control. In summary, these results demonstrate that enhanced expression of miR-342 and miR-363 in multiple myeloma cells inhibits Runx2 expression and multiple myeloma growth, decreases osteolysis, and enhances antitumor immunity. Thus, restoring the function of Runx2-targeting by miR-342 and miR-363 in multiple myeloma cells may afford a therapeutic benefit by preventing multiple myeloma progression.Implications: miR-342 and miR-363-mediated downregulation of Runx2 expression in multiple myeloma cells prevents multiple myeloma progression. Mol Cancer Res; 16(7); 1138-48. ©2018 AACR.


Subject(s)
Core Binding Factor Alpha 1 Subunit/genetics , MicroRNAs/genetics , Multiple Myeloma/genetics , Animals , Bone Marrow , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Multiple Myeloma/pathology , Multiple Myeloma/therapy , Osteoclasts/metabolism , Osteoclasts/pathology , RANK Ligand/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...