Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Org Biol ; 4(1): obac024, 2022.
Article in English | MEDLINE | ID: mdl-35899093

ABSTRACT

Long-axis rotation (LAR) of the jaws may be an important component of vertebrate feeding mechanisms, as it has been hypothesized to occur during prey capture or food processing across diverse vertebrate groups including mammals, ray-finned fishes, and sharks and rays. LAR can affect tooth orientation as well as muscle fiber direction and therefore muscle power during feeding. However, to date only a handful of studies have demonstrated this LAR in vivo. Here, we use XROMM to document LAR of the upper and lower jaws in white-spotted bamboo sharks, Chiloscyllium plagiosum, during suction feeding. As the lower jaw begins to depress for suction expansion, both the upper jaw (palatoquadrate) and lower jaw (Meckel's cartilage) evert, such that their toothed surfaces move laterally, and then they invert with jaw closing. Eversion has been shown to tense the dental ligament and erect the teeth in some sharks, but it is not clear how this tooth erection would contribute to suction feeding in bamboo sharks. Two recent XROMM studies have shown LAR of the lower jaws during mastication in mammals and stingrays and our study extends LAR to suction feeding and confirms its presence in shark species. Examples of LAR of the jaws are becoming increasingly widespread across vertebrates with unfused mandibular symphyses. Unfused lower jaws are the plesiomorphic condition for most vertebrate lineages and therefore LAR may be a common component of jaw mechanics unless the mandibular symphysis is fused.

2.
J Exp Biol ; 222(Pt 5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30824570

ABSTRACT

White-spotted bamboo sharks, Chiloscyllium plagiosum, generate strong suction-feeding pressures that rival the highest levels measured in ray-finned fishes. However, the hyostylic jaw suspension of these sharks is fundamentally different from the actinopterygian mechanism, including more mobile hyomandibulae, with the jaws and ceratohyal suspended from the hyomandibulae. Prior studies have proposed skeletal kinematics during feeding in orectolobid sharks from indirect measurements. Here, we tested these hypotheses using XROMM to measure cartilage motions directly. In agreement with prior hypotheses, we found extremely large retraction and depression of the ceratohyal, facilitated by large protraction and depression of the hyomandibula. Somewhat unexpectedly, XROMM also showed tremendous long-axis rotation (LAR) of both the ceratohyal and hyomandibula. This LAR likely increases the range of motion for the hyoid arch by keeping the elements properly articulated through their large arcs of motion. XROMM also confirmed that upper jaw protraction occurs before peak gape, similarly to actinopterygian suction feeders, but different from most other sharks in which jaw protrusion serves primarily to close the mouth. Early jaw protraction results from decoupling the rotations of the hyomandibula, with much of protraction occurring before peak gape with the other rotations lagging behind. In addition, the magnitudes of retraction and protraction of the hyoid elements are independent of the magnitude of depression, varying the shape of the mouth among feeding strikes. Hence, the large variation in suction-feeding behavior and performance may contribute to the wide dietary breadth of bamboo sharks.


Subject(s)
Branchial Region/physiology , Jaw/physiology , Mouth/physiology , Predatory Behavior , Sharks/physiology , Animals , Biomechanical Phenomena , Suction
3.
Integr Comp Biol ; 57(1): 7-17, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28881934

ABSTRACT

SYNOPSIS: The goal of the Society for Integrative and Comparative Biology's Broadening Participation Committee (SICB BPC) is to increase the number of underrepresented group (URG) members within the society and to expand their capabilities as future researchers and leaders within SICB. Our short-term 10-year goal was to increase the recruitment and retention of URG members in the society by 10%. Our long-term 25-year goal is to increase the membership of URG in the society through recruitment and retention until the membership demographic mirrors that of the US Census. Our plans to accomplish this included establishment of a formal standing committee, establishment of a moderate budget to support BPC activities, hosting professional development workshops, hosting diversity and mentor socials, and obtaining grant funds to supplement our budget. This paper documents broadening participation activities in the society, discusses the effectiveness of these activities, and evaluates BPC goals after 5 years of targeted funded activities. Over the past 5 years, the number of URG members rose by 5.2% to a total of 16.2%, members who report ethnicity and gender increased by 25.2% and 18%, respectively, and the number of members attending BPC activities has increased to 33% by 2016. SICB has made significant advances in broadening participation, not only through increased expenditures, but also with a commitment by its members and leadership to increase diversity. Most members realize that increasing diversity will both improve the Society's ability to develop different approaches to tackling problems within integrative biology, and help solve larger global issues that are evident throughout science and technology fields. In addition, having URG members as part of the executive committee would provide other URG members role models within the society, as well as have a voice in the leadership that represents diversity and inclusion for all scientists.


Subject(s)
Biology/statistics & numerical data , Societies/statistics & numerical data , Biology/trends , Research Personnel , Societies/trends
4.
Integr Comp Biol ; 56(3): 442-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27371386

ABSTRACT

The diet of dusky smoothhound sharks, Mustelus canis, shifts over ontogeny from soft foods to a diet dominated by crabs. This may be accompanied by changes in the skeletal system that facilitates the capture and processing of large and bulky prey. The hyoid arch, for example, braces the jaws against the cranium, and generates suction for prey capture and intraoral transport. In this study, ontogenetic changes in the hyoid arch were investigated by quantifying size, mineralization, and stiffness to determine whether increasingly stiffer cartilages are associated with the dietary switch. Total length and length of the hyomandibula and ceratohyal cartilages over ontogeny were the proxy for body size. Cross-sectional area, percent mineralization, and second moment of area were quantified in 28 individuals spanning most of the natural size range. Mechanical compression tests were conducted to compare flexural stiffness to size. Our results show that the morphological characters tested for the hyomandibular and ceratohyal cartilages scales isometrically with length. While stiffness of the hyomandibular and ceratohyal cartilages scales isometrically with length when assessed on morphological characters alone (second moment of area), this relationship becomes allometric when mechanical properties are included (flexural stiffness). Thus, while the hyoid arch elements grow isometrically, the mechanical properties dictate a scaling relationship that dwarfs morphological characteristics. The various combinations of morphologies and ontogenetic trajectories of chondrichthyan species illustrate the tremendous flexibility that they possess in the functional organization of the feeding apparatus.


Subject(s)
Cartilage/anatomy & histology , Feeding Behavior/physiology , Sharks/anatomy & histology , Sharks/physiology , Animals , Biological Evolution , Biomechanical Phenomena , Diet , Jaw/anatomy & histology , Jaw/physiology , Sharks/growth & development , Skull/anatomy & histology
5.
J Morphol ; 226(3): 309-329, 1995 Dec.
Article in English | MEDLINE | ID: mdl-29865346

ABSTRACT

The anatomy of the feeding apparatus of the lemon shark, Negaprion brevirostris, is investigated by gross dissection, computer axial tomography, and histological staining. The muscles and ligaments of the head associated with feeding are described. The upper and lower jaws are suspended by the hyoid arch, which in turn is braced against the chondrocranium by a complex series of ligaments. In addition, various muscles and the integument contribute to the suspension and stability of the jaws. The dual jaw joint is comprised of lateral and medial quadratomandibular joints that resist lateral movement of the upper and lower jaws on one another. This is important during feeding involving vigorous head shaking. An elastic ethmoplatine ligament that unites the anterior portion of the upper jaw to the neurocranium is involved with upper jaw retraction. The quadratomandibularis muscle is divided into four divisions with a bipinnate fiber arrangement of the two large superficial divisions. This arrangement would permit a relatively greater force per unit volume and reduce muscle bulging of the jaw adductor muscle in the spatially confined cheek region. Regions of relatively diffuse integumental ligaments overlying the adductor mandibulae complex and the levator palatoquadrati muscle, interspersed with localized regions of longer tendonlike attachments between the skin and the underlying muscle, permit greater musculoskeletal movement relative to the skin. The nomenclature of the hypobranchial muscles is discussed. In this shark they are comprised of the unsegmented coracomandibularis and coracohyoideus, and the segmented coracoarcualis. © 1995 Wiley-Liss, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL
...