Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171183, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38408653

ABSTRACT

Agricultural pesticides, nutrients, and habitat degradation are major causes of insect declines in lowland streams. To effectively conserve and restore stream habitats, standardized stream monitoring data and societal support for freshwater protection are needed. Here, we sampled 137 small stream monitoring sites across Germany, 83 % of which were located in agricultural catchments, with >900 citizen scientists in 96 monitoring groups. Sampling was carried out according to Water Framework Directive standards as part of the citizen science freshwater monitoring program FLOW in spring and summer 2021, 2022 and 2023. The biological indicator SPEARpesticides was used to assess pesticide exposure and effects based on macroinvertebrate community composition. Overall, 58 % of the agricultural monitoring sites failed to achieve a good ecological status in terms of macroinvertebrate community composition and indicated high pesticide exposure (SPEARpesticides status class: 29 % "moderate", 19 % "poor", 11 % "bad"). The indicated pesticide pressure in streams was related to the proportion of arable land in the catchment areas (R2 = 0.23, p < 0.001). Also with regards to hydromorphology, monitoring results revealed that 65 % of the agricultural monitoring sites failed to reach a good status. The database produced by citizen science groups was characterized by a high degree of accuracy, as results obtained by citizen scientists and professionals were highly correlated for SPEARpesticides index (R2 = 0.79, p < 0.001) and hydromorphology index values (R2 = 0.72, p < 0.001). Such citizen-driven monitoring of the status of watercourses could play a crucial role in monitoring and implementing the objectives of the European Water Framework Directive, thus contributing to restoring and protecting freshwater ecosystems.


Subject(s)
Citizen Science , Pesticides , Water Pollutants, Chemical , Animals , Invertebrates , Ecosystem , Rivers , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Pesticides/analysis , Germany , Water
2.
Microbiologyopen ; 6(4)2017 08.
Article in English | MEDLINE | ID: mdl-28401707

ABSTRACT

Increasing antibiotic resistances of numerous pathogens mean that myxobacteria, well known producers of new antibiotics, are becoming more and more interesting. More than 100 secondary metabolites, most of them with bioactivity, were described from the order Myxococcales. Especially new myxobacterial genera and species turned out to be reliable sources for novel antibiotics and can be isolated from uncommon neglected habitats like, for example, acidic soils. Almost nothing is known about the diversity of myxobacteria in moors, except some information from cultivation studies of the 1970s. Therefore, we evaluated the myxobacterial community composition of acidic high moor and fen both with cultivation-independent 16S rRNA clone bank analysis and with cultivation. Phylogenetic analyses of clone sequences revealed a great potential of undescribed myxobacteria in high moor and fen, whereby all sequences represent unknown taxa and were detected exclusively by cultivation-independent analyses. However, many clones were assigned to sequences from other cultivation-independent studies of eubacterial diversity in acidic habitats. Cultivation revealed different strains exclusively from the genus Corallococcus. Our study shows that the neglected habitat moor is a promising source and of high interest with regard to the cultivation of prospective new bioactive secondary metabolite producing myxobacteria.


Subject(s)
Biodiversity , Ecosystem , Environmental Microbiology , Myxococcales/classification , Myxococcales/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Myxococcales/genetics , Myxococcales/growth & development , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Microbiologyopen ; 5(2): 268-78, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26669488

ABSTRACT

Myxobacteria harbor an enormous potential for new bioactive secondary metabolites and therefore the isolation of in particular new groups is of great interest. The diversity of myxobacteria present in two ecological habitats, namely sand from Kiritimati Island and German compost, was evaluated by both cultivation-based and cultivation-independent methods. Phylogenetic analyses of the strains in comparison with 16S rRNA gene sequences from cultured and uncultured material in GenBank revealed a great potential of undescribed myxobacteria in both sampling sites. Several OTUs (operational taxonomic units) represent unknown taxa and were detected by clone bank analyses, but not by cultivation. Clone bank analyses indicated that the myxobacterial community is predominantly indigenous. The 16S rDNA libraries from the two samples were generated from total community DNA with myxobacterial specific forward and universal reverse primer sets. The clones were partially sequenced. Cultivation was successful for exclusively bacteriolytic, but not for cellulolytic myxobacteria and revealed 42 strains from the genera Corallococcus, Myxococcus, and Polyangium. The genera of Myxococcaceae family were represented by both approaches. But, even in this well studied family, as well as in the suborders Sorangiineae and Nannocystineae, a considerable number of clones were assigned to, if any, uncultivated organisms. Our study shows an overrepresentation of the genera Myxococcus spp. and Corallococcus spp. with standard cultivation methods. However, high deficits are demonstrated in the cultivation success of the myxobacterial diversity detected by exclusively cultivation-independent approaches. Especially, clades which are exclusively represented by clones are of high interest with regard to the cultivation of new bioactive secondary metabolite producers.


Subject(s)
Environmental Microbiology , Myxococcales/classification , Soil Microbiology , Soil , Biodiversity , Evolution, Molecular , Islands , Myxococcales/genetics , Myxococcales/isolation & purification , Myxococcales/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
J Biol Chem ; 277(52): 50923-33, 2002 Dec 27.
Article in English | MEDLINE | ID: mdl-12384499

ABSTRACT

Granzyme K (GzmK) belongs to a family of trypsin-like serine proteases localized in electron dense cytoplasmic granules of activated natural killer and cytotoxic T-cells. Like the related granzymes A and B, GzmK can trigger DNA fragmentation and is involved in apoptosis. We expressed the Ser(195) --> Ala variant of human pro-GzmK in Escherichia coli, crystallized it, and determined its 2.2-A x-ray crystal structure. Pro-GzmK possesses a surprisingly rigid structure, which is most similar to activated serine proteases, in particular complement factor D, and not their proforms. The N-terminal peptide Met(14)-Ile(17) projects freely into solution and can be readily approached by cathepsin C, the natural convertase of pro-granzymes. The pre-shaped S1 pocket is occupied by the ion paired residues Lys(188B)-Asp(194) and is hence not available for proper substrate binding. The Ser(214)-Cys(220) segment, which normally provides a template for substrate binding, bulges out of the active site and is distorted. With analogy to complement factor D, we suggest that this strand will maintain its non-productive conformation in mature GzmK, mainly due to the unusual residues Gly(215), Glu(219), and Val(94). We hypothesize that GzmK is proteolytically active only toward specific, as yet unidentified substrates, which upon approach transiently induce a functional active-site conformation.


Subject(s)
Enzyme Precursors/chemistry , Serine Endopeptidases/chemistry , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Cloning, Molecular , Crystallography, X-Ray/methods , DNA Primers , Endopeptidases/chemistry , Escherichia coli/enzymology , Escherichia coli/genetics , Granzymes , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Secondary , Sequence Alignment , Sequence Homology, Amino Acid , Tryptases
SELECTION OF CITATIONS
SEARCH DETAIL
...