Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37729615

ABSTRACT

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Subject(s)
Antineoplastic Agents , Leukemia, Megakaryoblastic, Acute , Humans , Child , Child, Preschool , Animals , Mice , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/pathology , Proteomics , Transcription Factors , Proto-Oncogene Proteins c-bcl-2 , Repressor Proteins
2.
Front Oncol ; 13: 1211540, 2023.
Article in English | MEDLINE | ID: mdl-37456227

ABSTRACT

Methyltransferases are enzymes fundamental to a wide range of normal biological activities that can become dysregulated during oncogenesis. For instance, the recent description of the methyltransferase-like (METTL) family of enzymes, has demonstrated the importance of the N6-adenosine-methyltransferase (m6A) modification in transcripts in the context of malignant transformation. Because of their importance, numerous METTL family members have been biochemically characterized to identify their cellular substrates, however some members such as METTL7B, recently renamed TMT1B and which is the subject of this review, remain enigmatic. First identified in the stacked Golgi, TMT1B is also localized to the endoplasmic reticulum as well as lipid droplets and has been reported as being upregulated in a wide range of cancer types including lung cancer, gliomas, and leukemia. Interestingly, despite evidence that TMT1B might act on protein substrates, it has also been shown to act on small molecule alkyl thiol substrates such as hydrogen sulfide, and its loss has been found to affect cellular proliferation and migration. Here we review the current evidence for TMT1B's activity, localization, and potential biological role in the context of both normal and cancerous cell types.

3.
Haematologica ; 107(1): 86-99, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33375773

ABSTRACT

Chromosomal translocations involving KMT2A gene are one of the most common genetic alterations found in pediatric acute myeloid leukemias (AML) although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we have used a human model system of AML driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observe the development of a profound hypomethylation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem cell associated genes along with skewed expression in other genes such as S100A8/9 implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-seq data showed that there were relatively few leukemiaspecific changes and the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed the adenylate cyclase gene ADCY9 as an essential gene in KM3-AML, and suggest the potential for autocrine signalling through the chemokine receptor CCR1 and CCL23 ligand. Together, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis.


Subject(s)
Epigenesis, Genetic , Leukemia, Myeloid, Acute , Leukemia, Myeloid , Adenylyl Cyclases , Child , DNA Methylation , Histone-Lysine N-Methyltransferase , Humans , Jumonji Domain-Containing Histone Demethylases , Leukemia, Myeloid, Acute/genetics , Mutation , Myeloid-Lymphoid Leukemia Protein , Translocation, Genetic
4.
Blood ; 136(24): 2764-2773, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33301029

ABSTRACT

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38-) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.


Subject(s)
Gene Expression Regulation, Leukemic , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-3/metabolism , Leukemia, Myeloid, Acute/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Line, Tumor , Heterografts , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, Knockout , Neoplasm Transplantation
5.
Genes Chromosomes Cancer ; 59(2): 125-130, 2020 02.
Article in English | MEDLINE | ID: mdl-31515871

ABSTRACT

Infant acute lymphoblastic leukemias (ALL) are rare hematological malignancies occurring in children younger than 1 year of age, most frequently associated with KMT2A rearrangements (KMT2A-r). The smaller subset without KMT2A-r, which represents 20% of infant ALL cases, is poorly characterized. Here we report two cases of chemotherapy-sensitive non-KMT2A-r infant ALL. Transcriptome analyses revealed identical ACIN1-NUTM1 gene fusions in both cases, derived from cryptic chromosomal rearrangements undetected by standard cytogenetic approaches. Two isoforms of the gene fusion, joining exons 3 or 4 of ACIN1 to exon 3 of NUTM1, were identified. Both fusion transcripts contained the functional DNA-binding SAP (SAF-A/B, Acinus, and PIAS) domain of ACIN1 and most of NUTM1. The detection of the ACIN1-NUTM1 fusion by RT-PCR allowed the molecular monitoring of minimal residual disease in a clinical setting. Based on publicly available genomic datasets and literature review, we predict that NUTM1 gene fusions are recurrent events in infant ALL. As such, we propose two clinically relevant assays to screen for NUTM1 rearrangements in bone marrow cells, independent of the fusion partner: NUMT1 immunohistochemistry and NUTM1 RNA expression. In sum, our study identifies ACIN1-NUTM1 as a recurrent and possibly cryptic fusion in non-KMT2A-r infant ALL, provides clinical tools to screen for NUTM1-rearranged leukemia and contributes to the refinement of this new subgroup.


Subject(s)
Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Chromosome Aberrations , Cytogenetics , Gene Fusion , Gene Rearrangement/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Immunohistochemistry , Infant, Newborn , Leukemia, Myeloid, Acute/genetics , Male , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism
6.
Blood Adv ; 3(21): 3307-3321, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31698461

ABSTRACT

Acute megakaryoblastic leukemia (AMKL) represents ∼10% of pediatric acute myeloid leukemia cases and typically affects young children (<3 years of age). It remains plagued with extremely poor treatment outcomes (<40% cure rates), mostly due to primary chemotherapy refractory disease and/or early relapse. Recurrent and mutually exclusive chimeric fusion oncogenes have been detected in 60% to 70% of cases and include nucleoporin 98 (NUP98) gene rearrangements, most commonly NUP98-KDM5A. Human models of NUP98-KDM5A-driven AMKL capable of faithfully recapitulating the disease have been lacking, and patient samples are rare, further limiting biomarkers and drug discovery. To overcome these impediments, we overexpressed NUP98-KDM5A in human cord blood hematopoietic stem and progenitor cells using a lentiviral-based approach to create physiopathologically relevant disease models. The NUP98-KDM5A fusion oncogene was a potent inducer of maturation arrest, sustaining long-term proliferative and progenitor capacities of engineered cells in optimized culture conditions. Adoptive transfer of NUP98-KDM5A-transformed cells into immunodeficient mice led to multiple subtypes of leukemia, including AMKL, that phenocopy human disease phenotypically and molecularly. The integrative molecular characterization of synthetic and patient NUP98-KDM5A AMKL samples revealed SELP, MPIG6B, and NEO1 as distinctive and novel disease biomarkers. Transcriptomic and proteomic analyses pointed to upregulation of the JAK-STAT signaling pathway in the model AMKL. Both synthetic models and patient-derived xenografts of NUP98-rearranged AMKL showed in vitro therapeutic vulnerability to ruxolitinib, a clinically approved JAK2 inhibitor. Overall, synthetic human AMKL models contribute to defining functional dependencies of rare genotypes of high-fatality pediatric leukemia, which lack effective and rationally designed treatments.


Subject(s)
Biomarkers , Disease Models, Animal , Leukemia, Megakaryoblastic, Acute/etiology , Leukemia, Megakaryoblastic, Acute/pathology , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Retinoblastoma-Binding Protein 2/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Computational Biology/methods , Disease Susceptibility , Gene Expression , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Leukemia, Megakaryoblastic, Acute/therapy , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Xenograft Model Antitumor Assays
7.
Exp Hematol ; 74: 1-12, 2019 06.
Article in English | MEDLINE | ID: mdl-31154068

ABSTRACT

Leukemia is a complex genetic disease caused by errors in differentiation, growth, and apoptosis of hematopoietic cells in either lymphoid or myeloid lineages. Large-scale genomic characterization of thousands of leukemia patients has produced a tremendous amount of data that have enabled a better understanding of the differences between adult and pediatric patients. For instance, although phenotypically similar, pediatric and adult myeloid leukemia patients differ in their mutational profiles, typically involving either chromosomal translocations or recurrent single-base-pair mutations, respectively. To elucidate the molecular mechanisms underlying the biology of this cancer, continual efforts have been made to develop more contextually and biologically relevant experimental models. Leukemic cell lines, for example, provide an inexpensive and tractable model but often fail to recapitulate critical aspects of tumor biology. Likewise, murine leukemia models of leukemia have been highly informative but also do not entirely reproduce the human disease. More recent advances in the development of patient-derived xenografts (PDXs) or human models of leukemias are poised to provide a more comprehensive, and biologically relevant, approach to directly assess the impact of the in vivo environment on human samples. In this review, the advantages and limitations of the various current models used to functionally define the genetic requirements of leukemogenesis are discussed.


Subject(s)
Cell Differentiation , Leukemia, Myeloid , Neoplasms, Experimental , Translocation, Genetic , Adolescent , Animals , Child , Child, Preschool , Female , Heterografts , Humans , Infant , Infant, Newborn , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Leukemia, Myeloid/therapy , Male , Mice , Neoplasm Transplantation , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy
8.
Genes Chromosomes Cancer ; 57(6): 311-319, 2018 06.
Article in English | MEDLINE | ID: mdl-29427526

ABSTRACT

The advent of large scale genomic sequencing technologies significantly improved the molecular classification of acute megakaryoblastic leukaemia (AMKL). AMKL represents a subset (∼10%) of high fatality pediatric acute myeloid leukemia (AML). Recurrent and mutually exclusive chimeric gene fusions associated with pediatric AMKL are found in 60%-70% of cases and include RBM15-MKL1, CBFA2T3-GLIS2, NUP98-KDM5A and MLL rearrangements. In addition, another 4% of AMKL harbor NUP98 rearrangements (NUP98r), with yet undetermined fusion partners. We report a novel NUP98-BPTF fusion in an infant presenting with primary refractory AMKL. In this NUP98r, the C-terminal chromatin recognition modules of BPTF, a core subunit of the NURF (nucleosome remodeling factor) ATP-dependent chromatin-remodeling complex, are fused to the N-terminal moiety of NUP98, creating an in frame NUP98-BPTF fusion, with structural homology to NUP98-KDM5A. The leukemic blasts expressed two NUP98-BPTF splicing variants, containing one or two tandemly spaced PHD chromatin reader domains. Our study also identified an unreported wild type BPTF splicing variant encoding for 2 PHD domains, detected both in normal cord blood CD34+ cells and in leukemic blasts, as with the fly BPTF homolog, Nurf301. Disease course was marked by rapid progression and primary chemoresistance, with ultimately significant tumor burden reduction following treatment with a clofarabine containing regimen. In sum, we report 2 novel NUP98-BPTF fusion isoforms that contribute to refine the NUP98r subgroup of pediatric AMKL. Multicenter clinical trials are critically required to determine the frequency of this fusion in AMKL patients and explore innovative treatment strategies for a disease still plagued with poor outcomes.


Subject(s)
Antigens, Nuclear/genetics , Leukemia, Megakaryoblastic, Acute/genetics , Nerve Tissue Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Transcription Factors/genetics , Disease Progression , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Humans , Infant , Karyotyping , Leukemia, Megakaryoblastic, Acute/drug therapy , Male , RNA Splicing
9.
Oncotarget ; 8(57): 96480-96481, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29228546
10.
Exp Hematol ; 56: 58-63, 2017 12.
Article in English | MEDLINE | ID: mdl-28911906

ABSTRACT

Acute myeloid leukemias (AMLs) with translocations of the mixed lineage leukemia (MLL/KMT2A) gene are common in young patients and are generally associated with poor clinical outcomes. The molecular biology of MLL fusion genes remains incompletely characterized and is complicated by the fact that more than 100 different partner genes have been identified in fusions with MLL. The continuously growing list of MLL fusions also represents a clinical challenge with respect to identification of novel fusions and tracking of the fusions to monitor progression of the disease after treatment. Recently, we have developed a novel single-donor model leukemia system that permits the development of human AML from normal cord blood cells. Gene expression analysis of this model and of MLL-AML patient samples has identified a number of candidate biomarker genes with highly biased expression on leukemic cells. Here, we present data demonstrating the potential clinical utility of several of these candidate genes for identifying known and novel MLL fusions.


Subject(s)
Biomarkers, Tumor/biosynthesis , Chromosomes, Human , Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/metabolism , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Translocation, Genetic , Animals , Biomarkers, Tumor/genetics , Female , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Male , Mice , Myeloid-Lymphoid Leukemia Protein/genetics
11.
Nucleic Acids Res ; 45(13): e122, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28472340

ABSTRACT

Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets.


Subject(s)
Biomarkers, Tumor/genetics , Databases, Genetic/statistics & numerical data , Gene Expression Profiling/statistics & numerical data , Transcriptome/genetics , Biomarkers, Tumor/classification , Breast Neoplasms/classification , Breast Neoplasms/genetics , Cluster Analysis , Computational Biology , Female , Genome-Wide Association Study/statistics & numerical data , Humans , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/genetics , Multigene Family , Prognosis , Software
12.
Mol Diagn Ther ; 21(3): 249-258, 2017 06.
Article in English | MEDLINE | ID: mdl-28229366

ABSTRACT

The development of next-generation sequencing technologies has had a profound impact on the field of cancer genomics. With the enormous quantities of data being generated from tumor samples, researchers have had to rapidly adapt tools or develop new ones to analyse the raw data to maximize its value. While much of this effort has been focused on improving specific algorithms to get faster and more precise results, the accessibility of the final data for the research community remains a significant problem. Large amounts of data exist but are not easily available to researchers who lack the resources and experience to download and reanalyze them. In this article, we focus on RNA-seq analysis in the context of cancer genomics and discuss the bioinformatic tools available to explore these data. We also highlight the importance of developing new and more intuitive tools to provide easier access to public data and discuss the related issues of data sharing and patient privacy.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Neoplasms/genetics , Computational Biology/standards , Confidentiality/ethics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Information Dissemination/methods , Sequence Analysis, RNA/methods , Transcriptome
13.
Sci Rep ; 6: 27379, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27271479

ABSTRACT

The proliferation and survival of hematopoietic stem cells (HSCs) has to be strictly coordinated to ensure the timely production of all blood cells. Here we report that the splice factor and RNA binding protein hnRNP L (heterogeneous nuclear ribonucleoprotein L) is required for hematopoiesis, since its genetic ablation in mice reduces almost all blood cell lineages and causes premature death of the animals. In agreement with this, we observed that hnRNP L deficient HSCs lack both the ability to self-renew and foster hematopoietic differentiation in transplanted hosts. They also display mitochondrial dysfunction, elevated levels of γH2AX, are Annexin V positive and incorporate propidium iodide indicating that they undergo cell death. Lin(-)c-Kit(+) fetal liver cells from hnRNP L deficient mice show high p53 protein levels and up-regulation of p53 target genes. In addition, cells lacking hnRNP L up-regulated the expression of the death receptors TrailR2 and CD95/Fas and show Caspase-3, Caspase-8 and Parp cleavage. Treatment with the pan-caspase inhibitor Z-VAD-fmk, but not the deletion of p53, restored cell survival in hnRNP L deficient cells. Our data suggest that hnRNP L is critical for the survival and functional integrity of HSCs by restricting the activation of caspase-dependent death receptor pathways.


Subject(s)
Cell Survival/physiology , Hematopoietic Stem Cells/cytology , Heterogeneous-Nuclear Ribonucleoprotein L/physiology , Animals , Apoptosis/genetics , Heterogeneous-Nuclear Ribonucleoprotein L/genetics , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Stress, Physiological , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
Nature ; 532(7600): 508-511, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27121842

ABSTRACT

Umbilical cord blood-derived haematopoietic stem cells (HSCs) are essential for many life-saving regenerative therapies. However, despite their advantages for transplantation, their clinical use is restricted because HSCs in cord blood are found only in small numbers. Small molecules that enhance haematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified, but in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular circuitry that underpins the self-renewal of human HSCs will facilitate the development of targeted strategies that expand HSCs for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs, the post-transcriptional mechanisms that guide HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we show that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signalling through post-transcriptional downregulation of canonical AHR pathway components in cord blood HSPCs. Our study gives mechanistic insight into RNA networks controlled by RNA-binding proteins that underlie self-renewal and provides evidence that manipulating such networks ex vivo can enhance the regenerative potential of human HSCs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Self Renewal , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , RNA-Binding Proteins/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Count , Cell Self Renewal/genetics , Down-Regulation/genetics , Female , Fetal Blood/cytology , Gene Knockdown Techniques , Humans , Male , Mice , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction/genetics
15.
BMC Genomics ; 17: 75, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26810393

ABSTRACT

BACKGROUND: Cancer genomics projects are producing ever-increasing amounts of rich and diverse data from patient samples. The ability to easily visualize this data in an integrated an intuitive way is currently limited by the current software available. As a result, users typically must use several different tools to view the different data types for their cohort, making it difficult to have a simple unified view of their data. RESULTS: Here we present Cascade, a novel web based tool for the intuitive 3D visualization of RNA-seq data from cancer genomics experiments. The Cascade viewer allows multiple data types (e.g. mutation, gene expression, alternative splicing frequency) to be simultaneously displayed, allowing a simplified view of the data in a way that is tuneable based on user specified parameters. The main webpage of Cascade provides a primary view of user data which is overlaid onto known biological pathways that are either predefined or added by users. A space-saving menu for data selection and parameter adjustment allows users to access an underlying MySQL database and customize the features presented in the main view. CONCLUSIONS: There is currently a pressing need for new software tools to allow researchers to easily explore large cancer genomics datasets and generate hypotheses. Cascade represents a simple yet intuitive interface for data visualization that is both scalable and customizable.


Subject(s)
Genomics/methods , Neoplasms/genetics , Software , Humans
16.
Nat Genet ; 47(9): 1030-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26237430

ABSTRACT

Using next-generation sequencing of primary acute myeloid leukemia (AML) specimens, we identified to our knowledge the first unifying genetic network common to the two subgroups of KMT2A (MLL)-rearranged leukemia, namely having MLL fusions or partial tandem duplications. Within this network, we experimentally confirmed upregulation of the gene with the most subtype-specific increase in expression, LOC100289656, and identified cryptic MLL fusions, including a new MLL-ENAH fusion. We also identified a subset of MLL fusion specimens carrying mutations in SPI1 accompanied by inactivation of its transcriptional network, as well as frequent RAS pathway mutations, which sensitized the leukemias to synthetic lethal interactions between MEK and receptor tyrosine kinase inhibitors. This transcriptomics-based characterization and chemical interrogation of human MLL-rearranged AML was a valuable approach for identifying complementary features that define this disease.


Subject(s)
Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Transcriptome , Animals , Antineoplastic Agents/pharmacology , Case-Control Studies , Drug Resistance, Neoplasm , Gene Regulatory Networks , Humans , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasm Transplantation , Oncogene Proteins, Fusion/genetics , Translocation, Genetic , ras Proteins/genetics
17.
Leuk Res ; 39(7): 709-18, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25934047

ABSTRACT

Acute myeloid leukemia (AML) occurs when hematopoietic progenitor cells acquire genetic defects blocking the regulation of normal growth and differentiation. Although recurrent translocations have been identified in AML, almost half of adult AML patients present with a normal karyotype (NK-AML). While cell line models exist to study AML, they frequently have abnormal/unstable karyotypes, while primary cells from NK-AML patients are difficult to maintain in vitro. Here we provide a thorough molecular characterization of a recently established cell line, CG-SH, which has normal cytogenetics, representing a useful new model for NK-AML. Using high-throughput DNA sequencing, we first defined the genetic background of this cell line. In addition to identifying potentially deleterious SNVs in genes relevant to AML, we also found insertions in both GATA2 and EZH2, two genes previously linked to AML. We further characterized the growth of this model system in vitro with a cytokine mix that promotes faster cell growth. We assessed gene expression changes after the addition of cytokines to the culture media and found differential expression in genes implicated in proliferation, apoptosis and differentiation. Our results provide a detailed molecular characterization of genetic defects in this cell line derived from an NK-AML patient.


Subject(s)
Genome, Human , Leukemia, Myeloid, Acute/genetics , Transcriptome , Base Sequence , Cell Line, Tumor , DNA Primers , Humans , Karyotyping , Mutation , Polymerase Chain Reaction
18.
Blood ; 123(11): 1720-8, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24478402

ABSTRACT

In mammals, combinatorial assembly of alternative families of subunits confers functional specificity to adenosine triphosphate (ATP)-dependent SWI/SNF-like Brg/Brm-associated factor (BAF) chromatin remodeling complexes by creating distinct polymorphic surfaces for interaction with regulatory elements and DNA-binding factors. Although redundant in terms of biochemical activity, the core ATPase subunits, BRG/SMARCA4 and BRM/SMARCA2, are functionally distinct and may contribute to complex specificity. Here we show using quantitative proteomics that BAF complexes expressed in leukemia are specifically assembled around the BRG ATPase. Moreover, using a mouse model of acute myeloid leukemia, we demonstrate that BRG is essential for leukemia maintenance, as leukemic cells lacking BRG rapidly undergo cell-cycle arrest and apoptosis. Most importantly, we show that BRG is dispensable for the maintenance of immunophenotypic long-term repopulating hematopoietic stem cells, suggesting that adroit targeting of BRG in leukemia may have potent and specific therapeutic effects.


Subject(s)
Chromatin Assembly and Disassembly , DNA Helicases/metabolism , DNA Helicases/physiology , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/physiology , Transcription Factors/metabolism , Transcription Factors/physiology , Animals , Blotting, Southern , Chromatography, Liquid , DNA Helicases/genetics , Disease Models, Animal , Flow Cytometry , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry , Transcription Factors/genetics
19.
Nat Commun ; 4: 2388, 2013.
Article in English | MEDLINE | ID: mdl-24005720

ABSTRACT

Upon muscle injury, the high mobility group box 1 (HMGB1) protein is upregulated and secreted to initiate reparative responses. Here we show that HMGB1 controls myogenesis both in vitro and in vivo during development and after adult muscle injury. HMGB1 expression in muscle cells is regulated at the translational level: the miRNA miR-1192 inhibits HMGB1 translation and the RNA-binding protein HuR promotes it. HuR binds to a cis-element, HuR binding sites (HuRBS), located in the 3'UTR of the HMGB1 transcript, and at the same time miR-1192 is recruited to an adjacent seed element. The binding of HuR to the HuRBS prevents the recruitment of Argonaute 2 (Ago2), overriding miR-1192-mediated translation inhibition. Depleting HuR reduces myoblast fusion and silencing miR-1192 re-establishes the fusion potential of HuR-depleted cells. We propose that HuR promotes the commitment of myoblasts to myogenesis by enhancing the translation of HMGB1 and suppressing the translation inhibition mediated by miR-1192.


Subject(s)
ELAV Proteins/metabolism , HMGB1 Protein/genetics , MicroRNAs/metabolism , Muscle Development/genetics , Protein Biosynthesis , 3' Untranslated Regions/genetics , Animals , Base Sequence , Binding Sites/genetics , Cell Extracts , Cell Line , Gene Expression Regulation , Gene Knockdown Techniques , Gene Silencing , HMGB1 Protein/metabolism , Mice , MicroRNAs/genetics , Molecular Sequence Data , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Myoblasts/metabolism , Protein Binding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics
20.
Blood ; 122(9): 1545-55, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23777767

ABSTRACT

Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain-containing family of demethylases comprises 27 members that target mono-, di-, and trimethylated lysine residues of histone (or nonhistone) proteins. To evaluate their role in regulation of hematopoietic stem cell (HSC) behavior, we performed an in vivo RNAi-based functional screen and demonstrated that Jarid1b and Jhdm1f play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSCs with preserved long-term in vivo lymphomyeloid differentiation potential. Through RNA sequencing analysis, Jarid1b knockdown was associated with increased expression levels of several HSC regulators (Hoxa7, Hoxa9, Hoxa10, Hes1, Gata2) and reduced levels of differentiation-associated genes. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative regulator of HSC activity and Jhdmlf as a positive regulator of HSC activity.


Subject(s)
DNA-Binding Proteins/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , High-Throughput Screening Assays/methods , Jumonji Domain-Containing Histone Demethylases/physiology , RNA Interference/physiology , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Hematopoiesis/drug effects , Hematopoietic Stem Cells/metabolism , Histone Demethylases/genetics , Histone Demethylases/physiology , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Mice, Congenic , Mice, Inbred C57BL , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Transcription Factors/genetics , Transcription Factors/physiology , Validation Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...