Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791867

ABSTRACT

Bone cancer and its related chronic pain are huge clinical problems since the available drugs are often ineffective or cannot be used long term due to a broad range of side effects. The mechanisms, mediators and targets need to be identified to determine potential novel therapies. Here, we characterize a mouse bone cancer model induced by intratibial injection of K7M2 osteosarcoma cells using an integrative approach and investigate the role of capsaicin-sensitive peptidergic sensory nerves. The mechanical pain threshold was assessed by dynamic plantar aesthesiometry, limb loading by dynamic weight bearing, spontaneous pain-related behaviors via observation, knee diameter with a digital caliper, and structural changes by micro-CT and glia cell activation by immunohistochemistry in BALB/c mice of both sexes. Capsaicin-sensitive peptidergic sensory neurons were defunctionalized by systemic pretreatment with a high dose of the transient receptor potential vanilloid 1 (TRPV1) agonist resiniferatoxin (RTX). During the 14- and 28-day experiments, weight bearing on the affected limb and the paw mechanonociceptive thresholds significantly decreased, demonstrating secondary mechanical hyperalgesia. Signs of spontaneous pain and osteoplastic bone remodeling were detected both in male and female mice without any sex differences. Microglia activation was shown by the increased ionized calcium-binding adapter molecule 1 (Iba1) immunopositivity on day 14 and astrocyte activation by the enhanced glial fibrillary acidic protein (GFAP)-positive cell density on day 28 in the ipsilateral spinal dorsal horn. Interestingly, defunctionalization of the capsaicin-sensitive afferents representing approximately 2/3 of the nociceptive fibers did not alter any functional parameters. Here, we provide the first complex functional and morphological characterization of the K7M2 mouse osteosarcoma model. Bone-cancer-related chronic pain and hyperalgesia are likely to be mediated by central sensitization involving neuroinflammation via glial cell activation in the spinal dorsal horn, but not the capsaicin-sensitive sensory neuronal system.

2.
Colloids Surf B Biointerfaces ; 234: 113751, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38241889

ABSTRACT

Most of the malignancies detected within the brain parenchyma are of metastatic origin. As the brain lacks classical lymphatic circulation, the primary way for metastasis relies on hematogenous routes. Dissemination of metastatic cells to the brain implies attachment to the luminal surface of brain endothelial cells, transmigration through the vessel wall, and adhesion to the brain surface of the vasculature. During this process, tumor cells must interact with brain endothelial cells and later on with pericytes. Physical interaction between tumor cells and brain vascular cells might be crucial in the successful extravasation of metastatic cells through blood vessels and later in their survival within the brain environment. Therefore, we applied single-cell force spectroscopy to investigate the nanoscale adhesive properties of living breast adenocarcinoma cells to brain endothelial cells and pericytes. We found target cell type-dependent adhesion characteristics, i.e. increased adhesion of the tumor cells to pericytes in comparison to endothelial cells, which underlines the existence of metastatic potential-related nanomechanical differences relying partly on membrane tether dynamics. Varying adhesion strength of the tumor cells to different cell types of brain vessels presumably reflects the transitory adhesion to endothelial cells before extravasation and the long-lasting strong interaction with pericytes during survival and proliferation in the brain. Our results highlight the importance of specific mechanical interactions between tumor cells and host cells during metastasis formation.


Subject(s)
Adenocarcinoma , Endothelial Cells , Humans , Pericytes , Brain/pathology , Endothelium , Adenocarcinoma/metabolism
3.
Acta Neuropathol Commun ; 11(1): 155, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749707

ABSTRACT

Inflammasomes, primarily responsible for the activation of IL-1ß, have emerged as critical regulators of the tumor microenvironment. By using in vivo and in vitro brain metastasis models, as well as human samples to study the role of the NLRP3 inflammasome in triple-negative breast cancer (TNBC) brain metastases, we found NLRP3 inflammasome components and IL-1ß to be highly and specifically expressed in peritumoral astrocytes. Soluble factors from TNBC cells induced upregulation and activation of NLRP3 and IL-1ß in astrocytes, while astrocyte-derived mediators augmented the proliferation of metastatic cells. In addition, inhibition of NLRP3 inflammasome activity using MCC950 or dampening the downstream effect of IL-1ß prevented the proliferation increase in cancer cells. In vivo, MCC950 reduced IL-1ß expression in peritumoral astrocytes, as well as the levels of inflammasome components and active IL-1ß. Most importantly, significantly retarded growth of brain metastatic tumors was observed in mice treated with MCC950. Overall, astrocytes contribute to TNBC progression in the brain through activation of the NLRP3 inflammasome and consequent IL-1ß release. We conclude that pharmacological targeting of inflammasomes may become a novel strategy in controlling brain metastatic diseases.


Subject(s)
Brain Neoplasms , Indenes , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Inflammasomes , Astrocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Sulfonamides/pharmacology , Tumor Microenvironment
5.
J Neuroinflammation ; 19(1): 68, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305649

ABSTRACT

BACKGROUND: Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1ß. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury. METHODS: After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing. RESULTS: In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4-L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1ß. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels. CONCLUSIONS: Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well.


Subject(s)
Inflammasomes , Peripheral Nerve Injuries , Humans , Inflammasomes/metabolism , Motor Neurons/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Sciatic Nerve/injuries
6.
Int J Mol Sci ; 22(11)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204159

ABSTRACT

By upregulation of cell adhesion molecules and secretion of proinflammatory cytokines, cells of the neurovascular unit, including pericytes and endothelial cells, actively participate in neuroinflammatory reactions. As previously shown, both cell types can activate inflammasomes, cerebral endothelial cells (CECs) through the canonical pathway, while pericytes only through the noncanonical pathway. Using complex in vitro models, we demonstrate here that the noncanonical inflammasome pathway can be induced in CECs as well, leading to a further increase in the secretion of active interleukin-1ß over that observed in response to activation of the canonical pathway. In parallel, a more pronounced disruption of tight junctions takes place. We also show that CECs respond to inflammatory stimuli coming from both the apical/blood and the basolateral/brain directions. As a result, CECs can detect factors secreted by pericytes in which the noncanonical inflammasome pathway is activated and respond with inflammatory activation and impairment of the barrier properties. In addition, upon sensing inflammatory signals, CECs release inflammatory factors toward both the blood and the brain sides. Consequently, CECs activate pericytes by upregulating their expression of NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), an inflammasome-forming pattern recognition receptor. In conclusion, cerebral pericytes and endothelial cells mutually activate each other in inflammation.


Subject(s)
Brain/pathology , Cell Communication , Endothelial Cells/pathology , Inflammasomes/metabolism , Pericytes/pathology , Signal Transduction , Animals , Inflammation/metabolism , Inflammation/pathology , Swine , Tight Junctions/metabolism
7.
Int J Mol Sci ; 22(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069135

ABSTRACT

Triple negative breast cancer presents higher mortality and poorer survival rates than other breast cancer (BC) types, due to the proneness to brain metastases formation, which are usually diagnosed at advanced stages. Therefore, the discovery of BC brain metastases (BCBM) biomarkers appears pivotal for a timely intervention. With this work, we aimed to disclose microRNAs (miRNAs) and extracellular vesicles (EVs) in the circulation as biomarkers of BCBM formation. Using a BCBM animal model, we analyzed EVs in plasma by nanoparticle tracking analysis and ascertained their blood-brain barrier (BBB) origin by flow cytometry. We further evaluated circulating miRNAs by RT-qPCR and their brain expression by in situ hybridization. In parallel, a cellular model of BCBM formation, combining triple negative BC cells and BBB endothelial cells, was used to differentiate the origin of biomarkers. Established metastases were associated with an increased content of circulating EVs, particularly of BBB origin. Interestingly, deregulated miRNAs in the circulation were observed prior to BCBM detection, and their brain origin was suggested by matching alterations in brain parenchyma. In vitro studies indicated that miR-194-5p and miR-205-5p are expressed and released by BC cells, endothelial cells and during their interaction. These results highlight miRNAs and EVs as biomarkers of BCBM in early and advanced stages, respectively.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Circulating MicroRNA/blood , Extracellular Vesicles/pathology , Animals , Blood-Brain Barrier , Brain Neoplasms/secondary , Breast Neoplasms/genetics , Cell Line, Tumor , Circulating MicroRNA/genetics , Endothelium, Vascular/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred BALB C , MicroRNAs/genetics , Xenograft Model Antitumor Assays
8.
Colloids Surf B Biointerfaces ; 204: 111810, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33965749

ABSTRACT

Despite of advances in modern therapeutics, one of the most feared complications of cancer are brain metastases, which often cause life impairing profound neurological symptoms and premature death. Breast adenocarcinoma is among the leading "sources" of brain metastases. Since the central nervous system lacks a classical lymphatic circulation, invading metastatic cells can reach the brain parenchyma only through haematogenous routes and must breach the blood-brain barrier (BBB). The key step before the transmigration of metastatic cells through the highly regulated interface of the BBB is the establishment of firm adhesion between the tumor cell and the cerebral endothelial layer. Using atomic force microscopy, as a high resolution force spectrograph, direct measurements of intercellular interactions was performed between living adenocarcinoma cells and a confluent endothelial layer pre-treated with carcinoma cell-derived exosomes. By immobilization of a living adenocarcinoma cell to an atomic force microscope's cantilever, intercellular de-adhesions were directly measured by single cell force spectroscopy (SCFS) at quasi-physiological conditions. De-adhesion dynamics and strength was characterized by several different calculated parameters, involving aspects of both membrane and cell surface related factors. Our results indicate that de-adhesion strength was lower in case of exosome pre-treated endothelial cells as compared to non-treated controls. Breast adenocarcinoma-derived exosomes have direct effect on de-adhesion pattern of brain endothelium.


Subject(s)
Adenocarcinoma , Exosomes , Brain , Cell Adhesion , Endothelial Cells , Endothelium , Humans , Microscopy, Atomic Force
9.
Cancers (Basel) ; 13(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671551

ABSTRACT

With breast cancer (BC) therapy improvements, the appearance of brain metastases has been increasing, representing a life-threatening condition. Brain metastasis formation involves BC cell (BCC) extravasation across the blood-brain barrier (BBB) and brain colonization by unclear mechanisms. We aimed to disclose the actors involved in BC brain metastasis formation, focusing on BCCs' phenotype, growth factor expression, and signaling pathway activation, correlating with BBB alterations and intercellular communication. Hippocampi of female mice inoculated with 4T1 BCCs were examined over time by hematoxylin-eosin, immunohistochemistry and immunofluorescence. Well-established metastases were observed at seven days, increasing thereafter. BCCs entering brain parenchyma presented mesenchymal, migratory, and proliferative features; however, with time, they increasingly expressed epithelial markers, reflecting a mesenchymal-epithelial transition. BCCs also expressed platelet-derived growth factor-B, ß4 integrin, and focal adhesion kinase, suggesting autocrine and/or paracrine regulation with adhesion signaling activation, while balance between Rac1 and RhoA was associated with the motility status. Intercellular communication via gap junctions was clear among BCCs, and between BCCs and endothelial cells. Thrombin accumulation, junctional protein impairment, and vesicular proteins increase reflect BBB alterations related with extravasation. Expression of plasmalemma vesicle-associated protein was increased in BCCs, along with augmented vascularization, whereas pericyte contraction indicated mural cells' activation. Our results provide further understanding of BC brain metastasis formation, disclosing potential therapeutic targets.

10.
Am J Physiol Heart Circ Physiol ; 320(4): H1370-H1392, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33543687

ABSTRACT

Age-related blood-brain barrier (BBB) disruption and cerebromicrovascular rarefaction contribute importantly to the pathogenesis of both vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). Recent advances in geroscience research enable development of novel interventions to reverse age-related alterations of the cerebral microcirculation for prevention of VCID and AD. To facilitate this research, there is an urgent need for sensitive and easy-to-adapt imaging methods that enable longitudinal assessment of changes in BBB permeability and brain capillarization in aged mice and that could be used in vivo to evaluate treatment efficiency. To enable longitudinal assessment of changes in BBB permeability in aged mice equipped with a chronic cranial window, we adapted and optimized two different intravital two-photon imaging approaches. By assessing relative fluorescence changes over the baseline within a volume of brain tissue, after qualitative image subtraction of the brain microvasculature, we confirmed that, in 24-mo-old C57BL/6J mice, cumulative permeability of the microvessels to fluorescent tracers of different molecular masses (0.3 to 40 kDa) is significantly increased compared with that of 5-mo-old mice. Real-time recording of vessel cross-sections showed that apparent solute permeability of single microvessels is significantly increased in aged mice vs. young mice. Cortical capillary density, assessed both by intravital two-photon microscopy and optical coherence tomography was also decreased in aged mice vs. young mice. The presented methods have been optimized for longitudinal (over the period of 36 wk) in vivo assessment of cerebromicrovascular health in preclinical geroscience research.NEW & NOTEWORTHY Methods are presented for longitudinal detection of age-related increase in blood-brain barrier permeability and microvascular rarefaction in the mouse cerebral cortex by intravital two-photon microscopy and optical coherence tomography.


Subject(s)
Aging/pathology , Blood-Brain Barrier/diagnostic imaging , Capillary Permeability , Cerebral Cortex/blood supply , Intravital Microscopy , Microscopy, Fluorescence, Multiphoton , Microvascular Rarefaction , Microvessels/diagnostic imaging , Tomography, Optical Coherence , Age Factors , Aging/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Male , Mice, Inbred C57BL , Microvascular Density , Microvessels/metabolism , Microvessels/pathology , Time Factors
11.
Pharmaceutics ; 13(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466551

ABSTRACT

By being an antagonist of glutamate and other receptors, kynurenic acid serves as an endogenous neuroprotectant in several pathologies of the brain. Unfortunately, systemic administration of kynurenic acid is hindered by its low permeability through the blood-brain barrier. One possibility to overcome this problem is to use analogues with similar biological activity as kynurenic acid, but with an increased permeability through the blood-brain barrier. We synthesized six novel aminoalkylated amide derivatives of kynurenic acid, among which SZR-104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide) proved to have the highest permeability through an in vitro blood-brain barrier model. In addition, permeability of SZR-104 was significantly higher than that of kynurenic acid, xanthurenic acid and 39B, a quinolone derivative/xanthurenic acid analogue. Since peripherally administered SZR-104 is able to inhibit epileptiform activity in the brain, we conclude that SZR-104 is a promising kynurenic acid analogue with good penetrability into the central nervous system.

12.
Front Pharmacol ; 11: 584184, 2020.
Article in English | MEDLINE | ID: mdl-33328988

ABSTRACT

Neuronal injuries are accompanied by release and accumulation of damage-associated molecules, which in turn may contribute to activation of the immune system. Since a wide range of danger signals (including endogenous ones) are detected by the nucleotide-binding oligomerization domain-, LRR- and pyrin domain-containing protein 3 (NLRP3) pattern recognition receptor, we hypothesized that NLRP3 may become activated in response to motor neuron injury. Here we show that peripheral injury of the oculomotor and the hypoglossal nerves results in upregulation of NLRP3 in corresponding motor nuclei in the brainstem of mice. Although basal expression of NLRP3 was observed in microglia, astroglia and neurons as well, its upregulation and co-localization with apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, suggesting inflammasome activation, was only detected in neurons. Consequently, increased production of active pro-inflammatory cytokines interleukin-1ß and interleukin-18 were detected after hypoglossal nerve axotomy. Injury-sensitive hypoglossal neurons responded with a more pronounced NLRP3 upregulation than injury-resistant motor neurons of the oculomotor nucleus. We further demonstrated that the mitochondrial protector diazoxide was able to reduce NLRP3 upregulation in a post-operative treatment paradigm. Our results indicate that NLRP3 is activated in motoneurons following acute nerve injury. Blockade of NLRP3 activation might contribute to the previously observed anti-inflammatory and neuroprotective effects of diazoxide.

13.
Int J Nanomedicine ; 15: 9939-9960, 2020.
Article in English | MEDLINE | ID: mdl-33376320

ABSTRACT

BACKGROUND: Non-spherical titanium dioxide (TiO2) nanoparticles have been increasingly applied in various biomedical and technological fields. Their toxicological characterization is, however, less complete than that of roundish nanoparticles. MATERIALS AND METHODS: Anatase form TiO2 nanorods, ca. 15x65 nm in size, were applied to cultured astrocytes in vitro and to the airways of young adult Wistar rats in vivo in 5, 10, and 8 mg/kg BW dose for altogether 28 days. Presence of nanorods and cellular damage was investigated in the astrocytes and in rat lungs and kidneys. Functional damage of the nervous system was studied by electrophysiological methods. RESULTS: The treated astrocytes showed loss of viability without detectable apoptosis. In rats, TiO2 nanorods applied to the airways reached the blood and various organs including the lungs, kidneys, and the central nervous system. In lung and kidney samples, nanorods were observed within (partly damaged) phagolysosomes and attached to organelles, and apoptotic cell death was also detected. In cortical and peripheral electrophysiological activity, alterations corresponding to energy shortage (resulting possibly from mitochondrial damage) and astrocytic dysfunction were detected. Local titanium levels and relative weight of the investigated organs, apoptotic cell death in the lungs and kidneys, and changes in the central and peripheral nervous activity were mostly proportional to the applied doses, and viability loss of the cultured astrocytes was also dose-dependent, suggesting causal relationship of treatments and effects. CONCLUSION: Based on localization of the visualized nanorods, on neuro-functional changes, and on literature data, the toxic mechanism involved mitochondrial damage, oxidative stress, and apoptotic cell death. These indicate potential human toxicity and occupational risk in case of exposure to rod-shaped TiO2 nanoparticles.


Subject(s)
Astrocytes/drug effects , Central Nervous System/drug effects , Kidney/drug effects , Lung/drug effects , Nanotubes/chemistry , Titanium/chemistry , Titanium/toxicity , Animals , Apoptosis/drug effects , Astrocytes/cytology , Astrocytes/metabolism , Cells, Cultured , Central Nervous System/metabolism , Humans , Kidney/metabolism , Lung/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
14.
J Nat Prod ; 83(10): 3058-3068, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33054206

ABSTRACT

Species in the Juncaceae accumulate different types of secondary metabolites, among them phenanthrenes and 9,10-dihydrophenanthrenes in substantial amounts. These compounds have chemotaxonomic significance and also possess interesting pharmacological activities. The present study has focused on the isolation, structure determination, and pharmacological investigation of phenanthrenes from Juncus gerardii. Twenty-six compounds, including 23 phenanthrenes, have been isolated from a methanol extract of this plant. Twelve compounds, the phenanthrenes gerardiins A-L (1-12), were obtained as new natural products. Eleven phenanthrenes [effusol (13), dehydroeffusol (14), effususin A (15), compressin A, 7-hydroxy-2-methoxy-1-methyl-5-vinyl-9,10-dihydrophenanthrene, juncusol, 2-hydroxy-7-hydroxymethyl-1-methyl-5-vinyl-9,10-dihydrophenanthrene, 2,7-dihydroxy-5-formyl-1-methyl-9,10-dihydrophenanthrene, effususol A, 2,7-dihydroxy-5-hydroxymethyl-1-methyl-9,10-dihydrophenanthrene, and jinflexin C], 1-O-p-coumaroyl-3-O-feruloyl-glycerol, and the flavones apigenin and luteolin were isolated for the first time from this plant. The cytotoxicity of the 23 isolated phenanthrenes in both mouse (4T1) and human (MDA-MB-231) triple-negative breast cancer cells and in a nontumor (D3, human cerebral microvascular endothelial) cell line was tested using an MTT viability assay. The results obtained showed that the dimeric compounds gerardiins I (9), J (10), K (11), and L (12), derived biogenetically from effusol and dehydroeffusol, were cytotoxic to both tumor and nontumor cell lines, while the monomeric compounds exerted no or very low cytotoxicity. Impedance measurements were consistent with the results of the MTT assays performed.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Salt-Tolerant Plants/chemistry , Triple Negative Breast Neoplasms/drug therapy , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Humans , Magnoliopsida , Mice , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tetrazolium Salts , Thiazoles
15.
Cells ; 9(8)2020 07 28.
Article in English | MEDLINE | ID: mdl-32731349

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.


Subject(s)
Blood-Brain Barrier/metabolism , Breast Neoplasms/genetics , MicroRNAs/metabolism , Female , Humans , Neoplasm Metastasis
16.
Cells ; 9(7)2020 07 04.
Article in English | MEDLINE | ID: mdl-32635451

ABSTRACT

Aging is characterized by a chronic low-grade sterile inflammation dubbed as inflammaging, which in part originates from accumulating cellular debris. These, acting as danger signals with many intrinsic factors such as cytokines, are sensed by a network of pattern recognition receptors and other cognate receptors, leading to the activation of inflammasomes. Due to the inflammasome activity-dependent increase in the levels of pro-inflammatory interleukins (IL-1ß, IL-18), inflammation is initiated, resulting in tissue injury in various organs, the brain and the spinal cord included. Similarly, in age-related diseases of the central nervous system (CNS), inflammasome activation is a prominent moment, in which cells of the neurovascular unit occupy a significant position. In this review, we discuss the inflammatory changes in normal aging and summarize the current knowledge on the role of inflammasomes and contributing mechanisms in common CNS diseases, namely Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke, all of which occur more frequently with aging.


Subject(s)
Aging/metabolism , Inflammasomes/metabolism , Neurodegenerative Diseases/metabolism , Stroke/metabolism , Aging/pathology , Animals , Humans , Neurodegenerative Diseases/pathology , Signal Transduction , Stroke/pathology
17.
Sci Rep ; 10(1): 12237, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699247

ABSTRACT

This study demonstrates a role for the extracellular matrix protein nephronectin (NPNT) in promoting experimental breast cancer brain metastasis, possibly through enhanced binding to- and migration through brain endothelial cells. With the introduction of more targeted breast cancer treatments, a prolonged survival has resulted during the last decade. Consequently, an increased number of patients develop metastasis in the brain, a challenging organ to treat. We recently reported that NPNT was highly expressed in primary breast cancer and associated with unfavourable prognosis. The current study addresses our hypothesis that NPNT promotes brain metastases through its integrin-binding motifs. SAGE-sequencing revealed that NPNT was significantly up-regulated in human breast cancer tissue compared to pair-matched normal breast tissue. Human brain metastatic breast cancers expressed both NPNT and its receptor, integrin α8ß1. Using an open access repository; BreastMark, we found a correlation between high NPNT mRNA levels and poor prognosis for patients with the luminal B subtype. The 66cl4 mouse cell line was used for expression of wild-type and mutant NPNT, which is unable to bind α8ß1. Using an in vivo model of brain metastatic colonization, 66cl4-NPNT cells showed an increased ability to form metastatic lesions compared to cells with mutant NPNT, possibly through reduced endothelial adhesion and transmigration.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Extracellular Matrix Proteins/metabolism , Integrins/metabolism , Animals , Brain/metabolism , Brain/pathology , Breast/metabolism , Breast/pathology , Cell Differentiation/physiology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Mice , Mice, Inbred BALB C , Prognosis , RNA, Messenger/metabolism
18.
Mol Oncol ; 14(9): 2040-2057, 2020 09.
Article in English | MEDLINE | ID: mdl-32534480

ABSTRACT

Brain metastases are life-threatening complications of triple-negative breast cancer, melanoma, and a few other tumor types. Poor outcome of cerebral secondary tumors largely depends on the microenvironment formed by cells of the neurovascular unit, among which pericytes are the least characterized. By using in vivo and in vitro techniques and human samples, here we show that pericytes play crucial role in the development of metastatic brain tumors by directly influencing key steps of the development of the disease. Brain pericytes had a prompt chemoattractant effect on breast cancer cells and established direct contacts with them. By secreting high amounts of extracellular matrix proteins, pericytes enhanced adhesion of both melanoma and triple-negative cancer cells, which might be particularly important in the exclusive perivascular growth of these tumor cells. In addition, pericytes secreted insulin-like growth factor 2 (IGF2), which had a very significant pro-proliferative effect on mammary carcinoma, but not on melanoma cells. By inhibiting IGF2 signaling using silencing or picropodophyllin (PPP), we could block the proliferation-increasing effect of pericytes on breast cancer cells. Administration of PPP (a blood-brain barrier-permeable substance) significantly decreased the size of brain tumors in mice inoculated with triple-negative breast cancer cells. Taken together, our results indicate that brain pericytes have significant pro-metastatic features, especially in breast cancer. Our study underlines the importance of targeting pericytes and the IGF axis as potential strategies in brain metastatic diseases.


Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/pathology , Insulin-Like Growth Factor II/metabolism , Pericytes/metabolism , Animals , Brain/pathology , Cell Adhesion , Cell Communication , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Insulin-Like Growth Factor II/genetics , Mice , Pericytes/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Fitoterapia ; 145: 104610, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32433929

ABSTRACT

Persicaria maculosa (Polygonaceae) has been used as edible and as medicinal plant since ancient times. As a result of multistep chromatographic purifications, chalcones [2'-hydroxy-3',4',6'-trimethoxychalcone (1), pashanone (2), pinostrobin chalcone (3)], flavanones [6-hydroxy-5,7-dimethoxyflavanone (4), pinostrobin (5), onysilin (6), 5-hydroxy-7,8-dimethoxyflavanone (7)], flavonol [3-O-methylgalangin (8)], stilbene [persilben (9)], diarylheptanoids [1,7-diphenylhept-4-en-3-one (10), dihydroyashabushiketol (12), yashabushidiol B (13)] and 3-oxo-α-ionol-glucoside (11) were isolated from P. maculosa. The present paper reports for the first time the occurrence of diarylheptanoid-type constituents in the family Polygonaceae. Cytotoxicity of 1-5, 7 and 9-11 on 4 T1 mouse triple negative breast cancer cells was assayed by MTT test. None of the tested compounds reduced the cell viability to less than 80% of the control. On non-tumorigenic D3 human brain endothelial cells the decrease of cell viability was observed in case of 1 and 2. Further impedance measurements on 4 T1 and D3 cells a concentration-dependent decrease in the cell index of both cell types was demonstrated for 1, while 2 proved to be toxic only on endothelial cells.


Subject(s)
Diarylheptanoids/pharmacology , Flavonoids/pharmacology , Phytochemicals/pharmacology , Polygonaceae/chemistry , Stilbenes/pharmacology , Animals , Brain/cytology , Cell Line, Tumor , Diarylheptanoids/isolation & purification , Endothelial Cells/drug effects , Flavonoids/isolation & purification , Humans , Hungary , Mice , Molecular Structure , Phytochemicals/isolation & purification , Plants, Medicinal/chemistry , Stilbenes/isolation & purification , Toxicity Tests
20.
Mol Oncol ; 14(3): 520-538, 2020 03.
Article in English | MEDLINE | ID: mdl-31930767

ABSTRACT

Breast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined. Here, we used a mouse model of BCBM and next-generation sequencing (NGS) to establish the alterations in circulating miRNAs during brain metastasis formation and development. We further performed bioinformatics analysis to identify their targets with relevance in the metastatic process. We additionally analyzed human resected brain metastasis samples of breast cancer patients for target expression validation. Breast cancer cells were injected in the carotid artery of mice to preferentially induce metastasis in the brain, and samples were collected at different timepoints (5 h, 3, 7, and 10 days) to follow metastasis development in the brain and in peripheral organs. Metastases were detected from 7 days onwards, mainly in the brain. NGS revealed a deregulation of circulating miRNA profile during BCBM progression, rising from 18% at 3 days to 30% at 10 days following malignant cells' injection. Work was focused on those altered prior to metastasis detection, among which were miR-802-5p and miR-194-5p, whose downregulation was validated by qPCR. Using targetscan and diana tools, the transcription factor myocyte enhancer factor 2C (MEF2C) was identified as a target for both miRNAs, and its expression was increasingly observed in malignant cells along brain metastasis development. Its upregulation was also observed in peritumoral astrocytes pointing to a role of MEF2C in the crosstalk between tumor cells and astrocytes. MEF2C expression was also observed in human BCBM, validating the observation in mouse. Collectively, downregulation of circulating miR-802-5p and miR-194-5p appears as a precocious event in BCBM and MEF2C emerges as a new player in brain metastasis development.


Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Mammary Neoplasms, Animal/blood , MicroRNAs/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Computational Biology , Disease Progression , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/genetics , High-Throughput Nucleotide Sequencing , Humans , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/secondary , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...