Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
1.
PLoS One ; 19(4): e0301447, 2024.
Article in English | MEDLINE | ID: mdl-38557762

ABSTRACT

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Subject(s)
Furylfuramide , Tretinoin , Humans , Retinoid X Receptors/genetics , Retinoid X Receptors/agonists , Retinoid X Receptors/metabolism , Ligands , Tretinoin/pharmacology , Tretinoin/metabolism , Epidermis/metabolism , Receptors, Cytoplasmic and Nuclear
2.
Cell Transplant ; 33: 9636897241226737, 2024.
Article in English | MEDLINE | ID: mdl-38323325

ABSTRACT

In animal models, cell therapies for different diseases or injuries have been very successful. Preclinical studies with cells aiming at a stroke, heart attack, and other emergency situations were promising but sometimes failed translation in clinical situations. We, therefore, investigated if human placenta-derived mesenchymal stromal cells can be injected in pigs without provoking rejection to serve as a xenogenic transplantation model to bridge preclinical animal studies to more promising future preclinical studies. Male human placenta-derived mesenchymal stromal cells were isolated, expanded, and characterized by flow cytometry, in vitro differentiation, and quantitative reverse-transcription polymerase chain reaction to prove their nature. Such cells were injected into the sphincter muscle of the urethrae of female pigs under visual control by cystoscopy employing a Williams needle. The animals were observed over 7 days of follow-up. Reactions of the host to the xenogeneic cells were explored by monitoring body temperature, and inflammatory markers including IL-1ß, CRP, and haptoglobin in blood. After sacrifice on day 7, infiltration of inflammatory cells in the tissue targeted was investigated by histology and immunofluorescence. DNA of injected human cells was detected by PCR. Upon injection in vascularized porcine tissue, human placenta-derived mesenchymal stromal cells were tolerated, and systemic inflammatory parameters were not elevated. DNA of injected cells was detected in situ 7 days after injection, and moderate local infiltration of inflammatory cells was observed. The therapeutic potential of human placenta-derived mesenchymal stromal cells can be explored in porcine large animal models of injury or disease. This seems a promising strategy to explore technologies for cell injections in infarcted hearts or small organs and tissues in therapeutically relevant amounts requiring large animal models to yield meaningful outcomes.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Myocardial Infarction , Swine , Humans , Male , Female , Animals , Disease Models, Animal , Cell Differentiation , DNA
3.
Life (Basel) ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38398721

ABSTRACT

Muscular insufficiency is observed in many conditions after injury, chronic inflammation, and especially in elderly populations. Causative cell therapies for muscle deficiencies are not state of the art. Animal models to study the therapy efficacy are, therefore, needed. We developed an improved protocol to produce myoblasts suitable for pre-clinical muscle therapy studies in a large animal model. Myoblasts were isolated from the striated muscle, expanded by employing five different protocols, and characterized on transcript and protein expression levels to determine procedures that yielded optimized regeneration-competent myoblasts and multi-nucleated myotubes. We report that swine skeletal myoblasts proliferated well under improved conditions without signs of cellular senescence, and expressed significant levels of myogenic markers including Pax7, MyoD1, Myf5, MyoG, Des, Myf6, CD56 (p ≤ 0.05 each). Upon terminal differentiation, myoblasts ceased proliferation and generated multi-nucleated myotubes. Injection of such myoblasts into the urethral sphincter complex of pigs with sphincter muscle insufficiency yielded an enhanced functional regeneration of this muscle (81.54% of initial level) when compared to the spontaneous regeneration in the sham controls without myoblast injection (67.03% of initial level). We conclude that the optimized production of porcine myoblasts yields cells that seem suitable for preclinical studies of cell therapy in a porcine large animal model of muscle insufficiency.

4.
Tissue Eng Part A ; 30(1-2): 14-30, 2024 01.
Article in English | MEDLINE | ID: mdl-37933911

ABSTRACT

The leading cause of stress urinary incontinence (SUI) in women is the urethral sphincter muscle deficiency caused by mechanical stress during pregnancy and vaginal delivery. In men, prostate cancer surgery and injury of local nerves and muscles are associated with incontinence. Current treatment often fails to satisfy the patient's needs. Cell therapy may improve the situation. We therefore investigated the regeneration potential of cells in ameliorating sphincter muscle deficiency and UI in a large animal model. Urethral sphincter deficiency was induced surgically in gilts by electrocautery and balloon dilatation. Adipose tissue-derived stromal cells (ADSCs) and myoblasts from Musculus semitendinosus were isolated from male littermates, expanded, characterized in depth for expression of marker genes and in vitro differentiation, and labeled. The cells were injected into the deficient sphincter complex of the incontinent female littermates. Incontinent gilts receiving no cell therapy served as controls. Sphincter deficiency and functional regeneration were recorded by monitoring the urethral wall pressure during follow-up by two independent methods. Cells injected were detected in vivo during follow-up by transurethral fluorimetry, ex vivo by fluorescence imaging, and in cryosections of tissues targeted by immunofluorescence and by polymerase chain reaction of the sex-determining region Y (SRY) gene. Partial spontaneous regeneration of sphincter muscle function was recorded in control gilts, but the sphincter function remained significantly below levels measured before induction of incontinence (67.03% ± 14.00%, n = 6, p < 0.05). Injection of myoblasts yielded an improved sphincter regeneration within 5 weeks of follow-up but did not reach significance compared to control gilts (81.54% ± 25.40%, n = 5). A significant and full recovery of the urethral sphincter function was observed upon injection of ADSCs within 5 weeks of follow-up (100.4% ± 23.13%, n = 6, p < 0.05). Injection of stromal cells provoked slightly stronger infiltration of CD45pos leukocytes compared to myoblasts injections and controls. The data of this exploratory study indicate that ADSCs inherit a significant potential to regenerate the function of the urethral sphincter muscle.


Subject(s)
Mesenchymal Stem Cells , Urinary Incontinence , Pregnancy , Swine , Female , Humans , Male , Animals , Urinary Incontinence/therapy , Myoblasts , Urethra , Sus scrofa , Cell- and Tissue-Based Therapy
5.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003612

ABSTRACT

Therapies utilizing autologous mesenchymal cell delivery are being investigated as anti-inflammatory and regenerative treatments for a broad spectrum of age-related diseases, as well as various chronic and acute pathological conditions. Easily available allogeneic full-term human placenta mesenchymal stromal cells (pMSCs) were used as a potential pro-regenerative, cell-based therapy in degenerative diseases, which could be applied also to elderly individuals. To explore the potential of allogeneic pMSCs transplantation for pro-regenerative applications, such cells were isolated from five different term-placentas, obtained from the dissected maternal, endometrial (mpMSCs), and fetal chorion tissues (fpMSCs), respectively. The proliferation rate of the cells in the culture, as well as their shape, in vitro differentiation potential, and the expression of mesenchymal lineage and stem cell markers, were investigated. Moreover, we studied the expression of immune checkpoint antigen CD276 as a possible modulation of the rejection of transplanted non-HLA-matched homologous or even xeno-transplanted pMSCs. The expression of the cell surface markers was also explored in parallel in the cryosections of the relevant intact placenta tissue samples. The expansion of pMSCs in a clinical-grade medium complemented with 5% human platelet lysate and 5% human serum induced a significant expression of CD276 when compared to mpMSCs expanded in a commercial medium. We suggest that the expansion of mpMSCs, especially in a medium containing platelet lysate, elevated the expression of the immune-regulatory cell surface marker CD276. This may contribute to the immune tolerance towards allogeneic pMSC transplantations in clinical situations and even in xenogenic animal models of human diseases. The endurance of the injected comparably young human-term pMSCs may promote prolonged effects in clinical applications employing non-HLA-matched allogeneic cell therapy for various degenerative disorders, especially in aged adults.


Subject(s)
B7 Antigens , Mesenchymal Stem Cells , Humans , Acute Disease , B7 Antigens/metabolism , Biomarkers/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cells, Cultured , Culture Media/pharmacology , Mesenchymal Stem Cells/metabolism
6.
Cells ; 12(17)2023 08 31.
Article in English | MEDLINE | ID: mdl-37681920

ABSTRACT

This study investigates the feasibility of establishing urine-derived tumor organoids from bladder cancer (BC) patients as an alternative to tissue-derived organoids. BC is one of the most common cancers worldwide and current diagnostic methods involve invasive procedures. Here, we investigated the potential of using urine samples, which contain exfoliated tumor cells, to generate urine-derived BC organoids (uBCOs). Urine samples from 29 BC patients were collected and cells were isolated and cultured in a three-dimensional matrix. The establishment and primary expansion of uBCOs were successful in 83% of the specimens investigated. The culturing efficiency of uBCOs was comparable to cancer tissue-derived organoids. Immunohistochemistry and immunofluorescence to characterize the uBCOs exhibited similar expressions of BC markers compared to the parental tumor. These findings suggest that urine-derived BC organoids hold promise as a non-invasive tool for studying BC and evaluating therapeutic responses. This approach could potentially minimize the need for invasive procedures and provide a platform for personalized drug screening. Further research in this area may lead to improved diagnostic and treatment strategies for BC patients.


Subject(s)
Body Fluids , Urinary Bladder Neoplasms , Humans , Organoids , Drug Evaluation, Preclinical
7.
Biomedicines ; 11(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37760927

ABSTRACT

Stress urinary incontinence is still a frequent problem for women and men, which leads to pronounced impairment of the quality of life and withdrawal from the social environment. Modern diagnostics and therapy improved the situation for individuals affected. But there are still limits, including the correct diagnosis of incontinence and its pathophysiology, as well as the therapeutic algorithms. In most cases, patients are treated with a first-line regimen of drugs, possibly in combination with specific exercises and electrophysiological stimulation. When conservative options are exhausted, minimally invasive surgical therapies are indicated. However, standard surgeries, especially the application of implants, do not pursue any causal therapy. Non-absorbable meshes and ligaments have fallen into disrepute due to complications. In numerous countries, classic techniques such as colposuspension have been revived to avoid implants. Except for tapes in the treatment of stress urinary incontinence in women, the literature on randomized controlled studies is insufficient. This review provides an update on pharmacological and surgical treatment options for stress urinary incontinence; it highlights limitations and formulates wishes for the future from a clinical perspective.

8.
Urologie ; 62(11): 1169-1176, 2023 Nov.
Article in German | MEDLINE | ID: mdl-37755575

ABSTRACT

Standardized structured radiological reporting (SSRB) has been promoted in recent years. The aims of SSRB include that reports be complete, clear, understandable, and stringent. Repetitions or superfluous content should be avoided. In addition, there are advantages in the presentation of chronological sequences, tracking and correlations with structured findings from other disciplines and also the use of artificial intelligence (AI)-based methods. The development of the presented template for SSRB of native computed tomography for urinary stones followed the "process for the creation of quality-assured and consensus-based report templates as well as subsequent continuous quality control and updating" proposed by the German Radiological Society (DRG). This includes several stages of drafts, consensus meetings and further developments. The final version was published on the DRG website ( www.befundung.drg.de ). The template will be checked annually by the steering group and adjusted as necessary. The template contains 6 organ domains (e.g., right kidney) for which entries can be made for a total of 21 different items, mostly with selection windows. If "no evidence of stones" is selected for an organ in the first query, the query automatically jumps to the next organ, so that the processing can be processed very quickly despite the potentially high total number of individual queries for all organs. The German, European, and North American Radiological Societies perceive the establishment of a standardized structured diagnosis of tomographic imaging methods not only in oncological radiology as one of the current central tasks. With the present template for the description of computed tomographic findings for urinary stone diagnostics, we are presenting the first version of a urological template. Further templates for urological diseases are to follow.


Subject(s)
Radiology , Urinary Calculi , Urolithiasis , Urology , Humans , Artificial Intelligence , Urolithiasis/diagnosis , Tomography, X-Ray Computed/methods
9.
Cells ; 12(16)2023 08 20.
Article in English | MEDLINE | ID: mdl-37626918

ABSTRACT

Organoids are three-dimensional constructs generated by placing cells in scaffolds to facilitate the growth of cultures with cell-cell and cell-matrix interactions close to the in vivo situation. Organoids may contain different types of cells, including cancer cells, progenitor cells, or differentiated cells. As distinct culture conditions have significant effects on cell metabolism, we explored the expansion of cells and expression of marker genes in bladder cancer cells expanded in two different common scaffolds. The cells were seeded in basement membrane extract (BME; s.c., Matrigel®) or in a cellulose-derived hydrogel (GrowDex®, GD) and cultured. The size of organoids and expression of marker genes were studied. We discovered that BME facilitated the growth of significantly larger organoids of cancer cell line RT112 (p < 0.05), cells from a solid tumor (p < 0.001), and a voiding urine sample (p < 0.001). Expression of proliferation marker Ki76, transcription factor TP63, cytokeratin CK20, and cell surface marker CD24 clearly differed in these different tumor cells upon expansion in BME when compared to cells in GD. We conclude that the choice of scaffold utilized for the generation of organoids has an impact not only on cell growth and organoid size but also on protein expression. The disadvantages of batch-to-batch-variations of BME must be balanced with the phenotypic bias observed with GD scaffolds when standardizing organoid cultures for clinical diagnoses.


Subject(s)
Body Fluids , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder , Epithelial Cells
10.
J Biol Chem ; 299(1): 102746, 2023 01.
Article in English | MEDLINE | ID: mdl-36436565

ABSTRACT

Retinoid X receptors (RXRs) are nuclear transcription factors that partner with other nuclear receptors to regulate numerous physiological processes. Although RXR represents a valid therapeutic target, only a few RXR-specific ligands (rexinoids) have been identified, in part due to the lack of clarity on how rexinoids selectively modulate RXR response. Previously, we showed that rexinoid UAB30 potentiates all-trans-retinoic acid (ATRA) signaling in human keratinocytes, in part by stimulating ATRA biosynthesis. Here, we examined the mechanism of action of next-generation rexinoids UAB110 and UAB111 that are more potent in vitro than UAB30 and the FDA-approved Targretin. Both UAB110 and UAB111 enhanced ATRA signaling in human organotypic epithelium at a 50-fold lower concentration than UAB30. This was consistent with the 2- to 5- fold greater increase in ATRA in organotypic epidermis treated with UAB110/111 versus UAB30. Furthermore, at 0.2 µM, UAB110/111 increased the expression of ATRA genes up to 16-fold stronger than Targretin. The less toxic and more potent UAB110 also induced more changes in differential gene expression than Targretin. Additionally, our hydrogen deuterium exchange mass spectrometry analysis showed that both ligands reduced the dynamics of the ligand-binding pocket but also induced unique dynamic responses that were indicative of higher affinity binding relative to UAB30, especially for Helix 3. UAB110 binding also showed increased dynamics towards the dimer interface through the Helix 8 and Helix 9 regions. These data suggest that UAB110 and UAB111 are potent activators of RXR-RAR signaling pathways but accomplish activation through different molecular responses to ligand binding.


Subject(s)
Tetrahydronaphthalenes , Tretinoin , Humans , Retinoid X Receptors/metabolism , Bexarotene , Ligands , Tetrahydronaphthalenes/pharmacology , Tretinoin/pharmacology , Tretinoin/metabolism , Epidermis/metabolism
11.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36323312

ABSTRACT

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Subject(s)
Interleukin-4 , Lipopolysaccharides , Mice , Animals , Interleukin-4/metabolism , Lipopolysaccharides/metabolism , Ligands , Epigenomics , Macrophages/metabolism , Toll-Like Receptors/metabolism , Epigenesis, Genetic , NF-kappa B/metabolism
12.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805961

ABSTRACT

Three-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids were compared using multivariate data analysis to monitor the impact of drugs on subcellular structures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluorophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays. Data-driven neural network and data validation analyses (k-means clustering) were performed to retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness. Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug interactions, providing the potential to determine and optimize patient-specific treatment efficacy.


Subject(s)
Organoids , Urinary Bladder Neoplasms , Biomarkers/metabolism , Cisplatin/pharmacology , Humans , Organoids/metabolism , Precision Medicine , Urinary Bladder Neoplasms/metabolism
13.
Int J Mol Sci ; 23(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35682984

ABSTRACT

Generation of organoids from urinary tract tumor samples was pioneered a few years ago. We generated organoids from two upper tract urothelial carcinomas and from one bladder cancer sample, and confirmed the expression of cytokeratins as urothelial antigens, vimentin as a mesenchymal marker, and fibroblast growth factor receptor 3 by immunohistochemistry. We investigated the dose response curves of two novel components, venetoclax versus S63845, in comparison to the clinical standard cisplatin in organoids in comparison to the corresponding two-dimensional cultures. Normal urothelial cells and tumor lines RT4 and HT1197 served as controls. We report that upper tract urothelial carcinoma cells and bladder cancer cells in two-dimensional cultures yielded clearly different sensitivities towards venetoclax, S63845, and cisplatin. Two-dimensional cultures were more sensitive at low drug concentrations, while organoids yielded higher drug efficacies at higher doses. In some two-dimensional cell viability experiments, colorimetric assays yielded different IC50 toxicity levels when compared to chemiluminescence assays. Organoids exhibited distinct sensitivities towards cisplatin and to a somewhat lesser extent towards venetoclax or S63845, respectively, and significantly different sensitivities towards the three drugs investigated when compared to the corresponding two-dimensional cultures. We conclude that organoids maintained inter-individual sensitivities towards venetoclax, S63845, and cisplatin. The preclinical models and test systems employed may bias the results of cytotoxicity studies.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Urologic Neoplasms , Carcinoma, Transitional Cell/pathology , Cisplatin/pharmacology , Humans , Organoids/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urologic Neoplasms/pathology
14.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628262

ABSTRACT

BACKGROUND: Bladder cancer is the most cost-intensive cancer due to high recurrence rates and long follow-up times. Bladder cancer organoids were considered interesting tools for investigating better methods for the detection and treatment of this cancer. METHODS: Organoids were generated from urothelial carcinoma tissue samples, then expanded and characterized; the expression of immune modulatory antigens and tumor stem cells markers CD24 and CD44 was explored in early (P ≤ 3) and later (P ≥ 5) passages (P) by immunofluorescence and by quantitative PCR of cDNA. The expression of these factors was investigated in the corresponding cancer tissue samples by immunohistochemistry. RESULTS: The expression of the PD-L1 was detected on some but not all organoids. CD276 and CD47 were observed on organoids in all passages investigated. Organoids growing beyond passage 8 expressed both CD24 and CD44 at elevated levels in early and late cultures. Organoids proliferating to the eighth passage initially expressed both CD24 and CD44, but lost CD24 expression over time, while CD44 remained. Organoids growing only up to the 6th passage failed to express CD24 but expressed CD44. CONCLUSIONS: The data indicate that the expression of CD24 in urothelial cancer cell organoids may serve as an indicator for the prolonged proliferation potential of the cells.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , B7 Antigens/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD24 Antigen/metabolism , Carcinoma, Transitional Cell/metabolism , Humans , Neoplastic Stem Cells/metabolism , Organoids/metabolism , Urinary Bladder Neoplasms/metabolism
15.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563359

ABSTRACT

The cell surface molecule CD276 (B7-H3) is an immune checkpoint antigen. The elevated expression of CD276 on tumors contributes to the suppression of anti-tumor T-cell responses and correlates with poor prognosis. METHODS: The expression of CD276 was explored in vitro on eight urothelial carcinoma cell lines (UM-UC) in comparison to eight normal urothelial cells (NUCs) by RT-qPCR, Western blotting, and flow cytometry. Cell proliferation was enumerated over consecutive passages. The expression of cancer stem cell markers CD24 and CD44, cytokeratins, and vimentin was investigated by immunofluorescence. The expression of CD276 in bladder tumor samples and metastases was explored by immunohistochemistry. RESULTS: Expression of CD276 on cell surfaces was elevated on UM-UCs when compared to NUCs. In UM-UCs, CD276 transcripts correlated moderately positive with CD276 protein expression (ρ = 0.660) and strongly positive with CD276 surface-expression (ρ = 0.810). CD276 mRNA expression (ρ = -0.475) and CD276 protein expression (ρ = -0.417) had a significant negative correlation with proliferation, while a significant correlation between proliferation and cell surface expression was not observed in UM-UCs. CONCLUSION: The expression of CD276 on UM-UC bladder tumor cell surfaces is elevated. Slow proliferating UM-UC cells express more CD276 mRNA and protein than fast proliferating cells. In patients, slow proliferating CD276high tumor (stem) cells may evade immune surveillance. However, cancer therapy targeting CD276 may be effective in the treatment of slow proliferating tumor cells.


Subject(s)
B7 Antigens , Carcinoma, Transitional Cell , Cell Proliferation , Urinary Bladder Neoplasms , B7 Antigens/genetics , B7 Antigens/metabolism , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/metabolism , Cell Line, Tumor , Female , Humans , Ligands , Male , RNA, Messenger , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
16.
Cell Transplant ; 31: 9636897221080943, 2022.
Article in English | MEDLINE | ID: mdl-35466714

ABSTRACT

Current regimen to treat patients suffering from stress urinary incontinence often seems not to yield satisfactory improvement or may come with severe side effects. To overcome these hurdles, preclinical studies and clinical feasibility studies explored the potential of cell therapies successfully and raised high hopes for better outcome. However, other studies were rather disappointing. We therefore developed a novel cell injection technology to deliver viable cells in the urethral sphincter complex by waterjet instead of using injection needles. We hypothesized that the risk of tissue injury and loss of cells could be reduced by a needle-free injection technology. Muscle-derived cells were obtained from young male piglets and characterized. Upon expansion and fluorescent labeling, cells were injected into cadaveric tissue samples by either waterjet or injection needle. In other experiments, labeled cells were injected by waterjet in the urethra of living pigs and incubated for up to 7 days of follow-up. The analyses documented that the cells injected by waterjet in vitro were viable and proliferated well. Upon injection in live animals, cells appeared undamaged, showed defined cellular somata with distinct nuclei, and contained intact chromosomal DNA. Most importantly, by in vivo waterjet injections, a significantly wider cell distribution was observed when compared with needle injections (P < .05, n ≥ 12 samples). The success rates of waterjet cell application in living animals were significantly higher (≥95%, n = 24) when compared with needle injections, and the injection depth of cells in the urethra could be adapted to the need by adjusting waterjet pressures. We conclude that the novel waterjet technology injects viable muscle cells in tissues at distinct and predetermined depth depending on the injection pressure employed. After waterjet injection, loss of cells by full penetration or injury of the tissue targeted was reduced significantly in comparison with our previous studies employing needle injections.


Subject(s)
Muscle Cells , Needles , Animals , Humans , Male , Muscles , Swine , Technology , Urethra
17.
J Biomed Mater Res B Appl Biomater ; 110(8): 1942-1955, 2022 08.
Article in English | MEDLINE | ID: mdl-35289080

ABSTRACT

Nanostructured materials possess unique structural and functional properties that play a crucial position in tissue engineering applications. Present investigation is aimed to synthesize chitosan-sodium alginate (CS) nanocomposite using hydrothermally prepared zirconia nanoparticles. In this, three different weight percentages of (0.5, 1, and 1.5) zirconia nanoparticles are utilized for the preparation of biomimetic nanocomposite scaffolds (CSZ) employing 4 wt% of CS by a solvent casting technique. Physico-chemical and thermal behavior of the prepared nanoparticles and their CSZ scaffolds are comprehensively characterized. Bioactivity of the prepared zirconia nanoparticles and CSZ scaffolds are explored in terms of in vitro biocompatibility, protein absorption in simulated body fluid (SBF), and phosphate buffered saline (PBS). Agar disc diffusion method is employed to identify the antibacterial property against Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity of zirconia nanoparticles and CSZ scaffolds is identified against human urothelial carcinoma (UC6) and osteosarcoma (MG-63) cells. These studies explore that zirconia nanoparticles are suitable for biomedical applications while it is interacted with chitosan and sodium alginate (CS) due to their promising biocompatibility. Biomimetically obtained chitosan/sodium alginate scaffold contain 1 wt% zirconia nanoparticles show higher biocompatibility amenable for tissue engineering applications.


Subject(s)
Carcinoma, Transitional Cell , Chitosan , Nanocomposites , Urinary Bladder Neoplasms , Alginates/chemistry , Alginates/pharmacology , Biomimetics , Chitosan/chemistry , Chitosan/pharmacology , Escherichia coli , Humans , Nanocomposites/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Zirconium
18.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34846534

ABSTRACT

Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-ß superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).


Subject(s)
Gene Expression Profiling/methods , Growth Differentiation Factor 15/genetics , Inflammation/genetics , Intercellular Signaling Peptides and Proteins/genetics , Macrophages/metabolism , Regeneration/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Growth Differentiation Factor 15/metabolism , Inflammation/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle Cells/metabolism , Muscles/injuries , Muscles/metabolism , Muscles/physiopathology , Myeloid Cells/metabolism , RNA-Seq/methods
19.
J Vis Exp ; (177)2021 11 23.
Article in English | MEDLINE | ID: mdl-34897276

ABSTRACT

Urinary incontinence (UI) is a highly prevalent condition characterized by the deficiency of the urethral sphincter muscle. Regenerative medicine branches, particularly cell therapy, are novel approaches to improve and restore the urethral sphincter function. Even though injection of active functional cells is routinely performed in clinical settings by needle and syringe, these approaches have significant disadvantages and limitations. In this context, needle-free waterjet (WJ) technology is a feasible and innovative method that can inject viable cells by visual guided cystoscopy in the urethral sphincter. In the present study, we used WJ to deliver porcine adipose tissue-derived stromal cells (pADSCs) into cadaveric urethral tissue and subsequently investigated the effect of WJ delivery on cell yield and viability. We also assessed the biomechanical features (i.e., elasticity) by atomic force microscopy (AFM) measurements. We showed that WJ delivered pADSCs were significantly reduced in their cellular elasticity. The viability was significantly lower compared to controls but is still above 80%.


Subject(s)
Adipose Tissue , Stromal Cells , Animals , Humans , Injections/methods , Male , Swine , Technology , Urethra
20.
Int J Mol Sci ; 22(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198683

ABSTRACT

We noted recently that the injection of cells with a needle through a cystoscope in the urethral sphincter muscle of pigs failed to deposit them nearby or at the intended target position in about 50% of all animals investigated (n > 100). Increasing the chance for precise cell injection by shotgun approaches employing several circumferential injections into the sphincter muscle bears the risk of tissue injury. In this study, we developed and tested a novel needle-free technique to precisely inject cells in the urethral sphincter tissue, or other tissues, using a water-jet system. This system was designed to fit in the working channels of endoscopes and cystoscopes, allowing a wide range of minimally invasive applications. We analyze key features, including the physical parameters of the injector design, pressure ranges applicable for tissue penetration and cell injections and biochemical parameters, such as different compositions of injection media. Our results present settings that enable the high viability of cells post-injection. Lastly, the method is suitable to inject cells in the superficial tissue layer and in deeper layers, required when the submucosa or the sphincter muscle of the urethra is targeted.


Subject(s)
Cells/metabolism , Cytological Techniques/methods , Animals , Cell Survival , Endoscopy , HeLa Cells , Humans , Swine , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...