Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-512927

ABSTRACT

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic--Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans. One sentence summarySystematic proteomic and genomic analyses of SARS-CoV-2 variants of concern reveal how variant-specific mutations alter viral gene expression, virus-host protein complexes, and the host response to infection with applications to therapy and future pandemic preparedness.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-503706

ABSTRACT

The appearance of new dominant variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the COVID-19 pandemic. Of these, the alpha variant (also known as B.1.1.7) that appeared initially in the UK became the dominant variant in much of Europe and North America in the first half of 2021. The Spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation in the polybasic cleavage site that has been suggested to enhance S cleavage. Here, we show that the alpha S protein confers a level of resistance to the effects of interferon-{beta} (IFN{beta}) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN{beta} and context-dependent resistance to IFITMs in the alpha S. However, while this appears to confer changes in sensitivity to endosomal protease inhibition consistent with enhanced cell-surface entry, its reversion does not reduce cleaved S incorporation into particles, indicating a role downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOCs may well also confer replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCEThe emergence of Variants of Concern of SARS-CoV-2 has been a key challenge in the global response to the COVID-19 pandemic. Accumulating evidence suggests VOCs are being selected to evade the human immune response, with much interest focussed on mutations in the Spike protein that escape from neutralizing antibody responses. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type-1 interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2, and enhancement by its paralogue IFITM3, that block virus entry into target cells. The key determinant of this is a proline to histidine change at position 681 in S adjacent to the furin-cleavage site that we have shown previously modulates IFITM2 sensitivity. Unlike other VOCs, in the context of the alpha spike, P681H modulates cell entry pathways of SARS-CoV-2, further reducing its dependence one endosomal proteases. Reversion of position 681 to a proline in viruses bearing the alpha spike is sufficient to restore interferon and IFITM2 sensitivity without reducing furin-mediated spike cleavage, suggesting post cleavage conformational changes in S are changing the viral entry pathway and therefore sensitivity to interferon. These data highlight the dynamic nature of the SARS CoV-2 S as it adapts to both innate and adaptive immunity in the human population.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-499603

ABSTRACT

SARS-CoV-2 adaptation to its human host is evidenced by the emergence of new viral lineages with distinct genotypic and phenotypic characteristics, termed variants of concern (VOCs). Particular VOCs have become sequentially dominant globally (Alpha, Delta, Omicron) with each evolving independently from the ancestral Wuhan strain. Omicron is notable for its large number of spike mutations1 found to promote immune escape and re-infection2. Most recently, Omicron BA.4 and BA.5 subvariants have emerged with increasing levels of adaptive immune escape threatening vaccine effectiveness and increasing hospitalisations1,3-12. Here, we demonstrate that the most recent Omicron variants have enhanced capacity to antagonise or evade human innate immune defenses. We find Omicron BA.4 and BA.5 replication is associated with reduced activation of epithelial innate immune responses versus earlier BA.1 and BA.2 subvariants. We also find enhanced expression of innate immune antagonist proteins Orf6 and N, similar to Alpha, suggesting common pathways of human adaptation and linking VOC dominance to improved innate immune evasion. We conclude that Omicron BA.4 and BA.5 have combined evolution of antibody escape with enhanced antagonism of human innate immunity to improve transmission and possibly reduce immune protection from severe disease.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21268111

ABSTRACT

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron, the fifth VOC to be described, harbours 30 amino acid mutations in spike including 15 in the receptor-binding domain. Here, we demonstrate substantial evasion of neutralisation by Omicron in vitro using sera from vaccinated individuals. Importantly, these data are mirrored by a substantial reduction in real-world vaccine effectiveness that is partially restored by booster vaccination. We also demonstrate that Omicron does not induce cell syncytia and favours a TMPRSS2-independent endosomal entry pathway. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-474653

ABSTRACT

The SARS-CoV-2 Omicron/BA.1 lineage emerged in late 2021 and rapidly displaced the Delta variant before being overtaken itself globally by, the Omicron/BA.2 lineage in early 2022. Here, we describe how Omicron BA.1 and BA.2 show a lower severity phenotype in a hamster model of pathogenicity which maps specifically to the spike gene. We further show that Omicron is attenuated in a lung cell line but replicates more rapidly, albeit to lower peak titres, in human primary nasal cells. This replication phenotype also maps to the spike gene. Omicron spike (including the emerging Omicron lineage BA.4) shows attenuated fusogenicity and a preference for cell entry via the endosomal route. We map the altered Omicron spike entry route and partially map the lower fusogenicity to the S2 domain, particularly the substitution N969K. Finally, we show that pseudovirus with Omicron spike, engineered in the S2 domain to confer a more Delta-like cell entry route retains the antigenic properties of Omicron. This shows a distinct separation between the genetic determinants of these two key Omicron phenotypes, raising the concerning possibility that future variants with large antigenic distance from currently circulating and vaccine strains will not necessarily display the lower intrinsic severity seen during Omicron infection.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-467693

ABSTRACT

Variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) threaten the global response to the COVID-19 pandemic. The alpha (B.1.1.7) variant appeared in the UK became dominant in Europe and North America in early 2021. The Spike glycoprotein of alpha has acquired a number mutations including the P681H mutation in the polybasic cleavage site that has been suggested to enhance Spike cleavage. Here, we show that the alpha Spike protein confers a level of resistance to the effects of interferon-{beta} (IFN{beta}) in lung epithelial cells. This correlates with resistance to restriction mediated by interferon-induced transmembrane protein-2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is necessary for comparative resistance to IFN{beta} in a molecularly cloned SARS-CoV-2 encoding alpha Spike. Overall, we suggest that in addition to adaptive immune escape, mutations associated with VOCs also confer replication advantage through adaptation to resist innate immunity.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-456972

ABSTRACT

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs and farmed mink. Since the start of the 2019 pandemic several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all 3 mink-adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...