Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(45): eabi8065, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739322

ABSTRACT

Tropopause height (H) is a sensitive diagnostic for anthropogenic climate change. Previous studies showed increases in H over 1980­2000 but were inconsistent in projecting H trends after 2000. While H generally responds to temperature changes in the troposphere and stratosphere, the relative importance of these two contributions is uncertain. Here, we use radiosonde balloon observations in the Northern Hemisphere (NH) over 20°N to 80°N to reveal a continuous rise of H over 1980­2020. Over 2001­2020, H increases at 50 to 60 m/decade, which is comparable to the trend over 1980­2000. The GPS radio occultation measurements from satellites and homogenized radiosonde records are in good agreement with those results. The continuous rise of the tropopause in the NH after 2000 results primarily from tropospheric warming. A large trend in H remains after major natural forcings for H are removed, providing further observational evidence for anthropogenic climate change.

2.
Geophys Res Lett ; 47(14): e2020GL089027, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32999515

ABSTRACT

A detailed analysis of double tropopause (DT) occurrences requires vertically well resolved, accurate, and globally distributed information on the troposphere-stratosphere transition zone. Here, we use radio occultation observations from 2001 to 2018 with such properties. We establish a connection between El Niño-Southern Oscillation (ENSO) phases and the distribution of DTs by analyzing the global and seasonal DT characteristics. The seasonal distribution of DTs reveals several hotspot locations, such as near the subtropical jet stream and over high mountain ranges, where DTs occur particularly often. In this study, we detect a higher number of DTs during the cold La Niña state while warmer El Niño events result in lower DT rates, affecting the structure of the tropopause region. Close to the Niño 3 region, this relates to a much lower first lapse rate tropopause altitude during La Niña and corresponds to an apparent narrowing of the tropical belt there.

3.
Geophys Res Lett ; 46(21): 12486-12494, 2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31857737

ABSTRACT

Small volcanic eruptions and their effects have recently come into research focus. While large eruptions are known to strongly affect stratospheric temperature, the impacts of smaller eruptions are hard to quantify because their signals are masked by natural variability. Here, we quantify the temperature signals from small volcanic eruptions between 2002 and 2016 using new vertically resolved aerosol data and precise temperature observations from radio occultation. We find characteristic space-time signals that can be associated with specific eruptions. In the lower stratosphere, robust warming signals are observed, while in the midstratosphere also cooling signals of some eruptions appear. We find that the volcanic contribution to the temperature trend is up to 20%, depending on latitude and altitude. We conclude that detailed knowledge of the vertical structure of volcanic temperature impacts is crucial for comprehensive trend analysis in order to separate natural from anthropogenic temperature changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...