Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(24): 242501, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951807

ABSTRACT

The microscopic structure of the low-energy electric dipole response, commonly denoted as pygmy dipole resonance (PDR), was studied for ^{120}Sn in a ^{119}Sn(d,pγ)^{120}Sn experiment. Unprecedented access to the single-particle structure of excited 1^{-} states below and around the neutron-separation threshold was obtained by comparing experimental data to predictions from a novel theoretical approach. The novel approach combines detailed structure input from energy-density functional plus quasiparticle-phonon model theory with reaction theory to obtain a consistent description of both the structure and reaction aspects of the process. The presented results show that the understanding of one-particle-one-hole structures of the 1^{-} states in the PDR region is crucial to reliably predict properties of the PDR and its contribution to nucleosynthesis processes.

2.
Proc Natl Acad Sci U S A ; 116(21): 10250-10257, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31036648

ABSTRACT

There is not currently a well-established, if any, biological test to diagnose myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The molecular aberrations observed in numerous studies of ME/CFS blood cells offer the opportunity to develop a diagnostic assay from blood samples. Here we developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format. To pursue the goal of developing a reliable biomarker for ME/CFS and to demonstrate the utility of our platform for point-of-care diagnostics, we validated the array by testing patients with moderate to severe ME/CFS patients and healthy controls. The ME/CFS samples' response to the hyperosmotic stressor observed as a unique characteristic of the impedance pattern and dramatically different from the response observed among the control samples. We believe the observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide us with a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, we developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.


Subject(s)
Biomarkers/blood , Fatigue Syndrome, Chronic/blood , Fatigue Syndrome, Chronic/diagnosis , Nanotechnology/methods , Algorithms , Case-Control Studies , Cell Line , Humans , Leukocytes, Mononuclear/metabolism , Machine Learning
3.
Phys Rev Lett ; 109(20): 202506, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23215479

ABSTRACT

The neutron capture cross section of (235)U was measured for the neutron incident energy region between 4 eV and 1 MeV at the DANCE facility at the Los Alamos Neutron Science Center with an unprecedented accuracy of 2-3% at 1 keV. The new methodology combined three independent measurements. In the main experiment, a thick actinide sample was used to determine neutron capture and neutron-induced fission rates simultaneously. In the second measurement, a fission tagging detector was used with a thin actinide sample and detailed characteristics of the prompt-fission gamma rays were obtained. In the third measurement, the neutron scattering background was characterized using a sample of (208)Pb. The relative capture cross section was obtained from the experiment with the thick (235)U sample using a ratio method after the subtraction of the fission and neutron scattering backgrounds. Our result indicates errors that are as large as 30% in the 0.5-2.5 keV region, in the current knowledge of neutron capture as embodied in major nuclear data evaluations. Future modifications of these databases using the improved precision data given herein will have significant impacts in neutronics calculations for a variety of nuclear technologies.

4.
Rev Sci Instrum ; 79(10): 10E503, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044489

ABSTRACT

Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material.

5.
Phys Rev Lett ; 98(14): 142501, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17501268

ABSTRACT

The energy splitting of the 229Th ground-state doublet is measured to be 7.6+/-0.5 eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of 233U (105 muCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19-->0 keV).

6.
Phys Rev Lett ; 87(7): 072503, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11497887

ABSTRACT

Enhanced decay of the 31-yr isomer of (178)Hf induced by x-ray irradiation has been reported previously. Here we describe an attempt to reproduce this result with an intense "white" x-ray beam from the Advanced Photon Source. No induced decay was observed. The upper limits for the energy-integrated cross sections for such a process, over the range of energies of 20--60 keV x rays, are less than 2 x 10(-27) cm(2) keV, below the previously reported values by more than 5 orders of magnitude; at 8 keV the limit is 5 x 10(-26) cm(2) keV.

SELECTION OF CITATIONS
SEARCH DETAIL
...