Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685315

ABSTRACT

In this work, we aimed to determine the role of the mechanical, structural, and thermal properties of poly(l-lactide-co-glycolide-co-trimethylene carbonate) (P(l-LA:GA:TMC)) with shape memory in the formulation of implantable and biodegradable rods with aripiprazole (ARP). Hot melt extrusion (HME) and electron beam (EB) irradiation were applied in the formulation process of blank rods and rods with ARP. Rod degradation was carried out in a PBS solution. HPLC; NMR; DSC; compression and tensile tests; molecular weight (Mn); water uptake (WU); and weight loss (WL) analyses; and SEM were used in this study. HME and EB irradiation did not influence the structure of ARP. The mechanical tests indicated that the rods may be safely implanted using a pre-filled syringe. During degradation, no unfavorable changes in terpolymer content were observed. A decrease in the glass transition temperature and the Mn, and an increase in the WU and the WL were revealed. The loading of ARP and EB irradiation induced earlier pore formation and more intense WU and WL changes. ARP was released in a tri-phasic model with the lag phase; therefore, the proposed formulation may be administered as a delayed-release system. EB irradiation was found to accelerate ARP release.

2.
Acta Bioeng Biomech ; 21(3): 39-47, 2019.
Article in English | MEDLINE | ID: mdl-31798027

ABSTRACT

PURPOSE: Poly(L-lactide-co-glycolide-co-trimethylene carbonate) rods with risperidone and 17-ß-estradiol were sterilized by electron beam irradiation. The aim of the study was to assess electron beam irradiation impact on terpolymer composition, chain microstructure, glass transition temperature, molecular weight and the morphological features of rods. METHODS: Hot melt extrusion in the formulation of rods was applied. Sterilization of the rods was performed by electron beam in an electron beam accelerator (10 MeV, 360 mA, 25 kGy). The following methods in the development of rods were applied: nuclear magnetic resonance, differential scanning calorimetry, gel permeation chromatography and scanning electron microscopy. RESULTS: Sterilization influenced only glass transition temperature in blind rods and rods with risperidone. As for the other parameters, no significant changes were observed as far as a sterilization effect is concerned. However, some changes were noted after introducing drug substances and after extrusion. CONCLUSIONS: Electron beam irradiation of rods with risperidone and rods with 17-ß-estradiol is an adequate method for sterilizing implantable drug delivery systems.


Subject(s)
Electrons , Estradiol/pharmacology , Prostheses and Implants , Risperidone/pharmacology , Sterilization , Calorimetry, Differential Scanning , Carbon-13 Magnetic Resonance Spectroscopy , Drug Delivery Systems , Molecular Weight , Polymers/chemistry , Proton Magnetic Resonance Spectroscopy , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...