Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia ; 62(8): e123-e128, 2021 08.
Article in English | MEDLINE | ID: mdl-34231878

ABSTRACT

There is growing evidence for the disease-modifying potential of metabolic therapies, including the ketogenic diet (KD), which is used to treat medically intractable epilepsy. However, it remains unclear whether the KD exerts direct effects on histopathological changes in epileptic brain, or whether the changes are a consequence of diet-induced reduction in seizure activity. Here, we used unbiased stereological techniques to quantify the seizure-induced reduction in cell number in the CA1 region of the hippocampus of epileptic Kcna1-null mice and compared the effects of the KD with that of phenobarbital (PB), a widely employed anti-seizure drug. Our data suggest that the anti-seizure activity of the KD or PB was similar. However, CA1 cell numbers of KD-treated hippocampi were not significantly different from those seen in wild-type (WT) mice, whereas CA1 cell counts in standard diet and PB-treated Kcna1-null mice were 23% and 31% lower than WT animals, respectively. These results support the notion that structural protection of cells may involve more than seizure attenuation, and that the KD engages mechanisms that also promote or restore hippocampal morphological integrity.


Subject(s)
Diet, Ketogenic , Epilepsy , Seizures , Animals , Cell Count , Epilepsy/diet therapy , Epilepsy/genetics , Kv1.1 Potassium Channel/genetics , Mice , Mice, Knockout , Seizures/genetics
2.
Ann Neurol ; 78(1): 77-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25899847

ABSTRACT

OBJECTIVE: Ketone bodies (KB) are products of fatty acid oxidation and serve as essential fuels during fasting or treatment with the high-fat antiseizure ketogenic diet (KD). Despite growing evidence that KB exert broad neuroprotective effects, their role in seizure control has not been firmly demonstrated. The major goal of this study was to demonstrate the direct antiseizure effects of KB and to identify an underlying target mechanism. METHODS: We studied the effects of both the KD and KB in spontaneously epileptic Kcna1-null mice using a combination of behavioral, planar multielectrode, and standard cellular electrophysiological techniques. Thresholds for mitochondrial permeability transition (mPT) were determined in acutely isolated brain mitochondria. RESULTS: KB alone were sufficient to: (1) exert antiseizure effects in Kcna1-null mice, (2) restore intrinsic impairment of hippocampal long-term potentiation and spatial learning-memory defects in Kcna1-null mutants, and (3) raise the threshold for calcium-induced mPT in acutely prepared mitochondria from hippocampi of Kcna1-null animals. Targeted deletion of the cyclophilin D subunit of the mPT complex abrogated the effects of KB on mPT, and in vivo pharmacological inhibition and activation of mPT were found to mirror and reverse, respectively, the antiseizure effects of the KD in Kcna1-null mice. INTERPRETATION: The present data reveal the first direct link between mPT and seizure control, and provide a potential mechanistic explanation for the KD. Given that mPT is increasingly being implicated in diverse neurological disorders, our results suggest that metabolism-based treatments and/or metabolic substrates might represent a worthy paradigm for therapeutic development.


Subject(s)
3-Hydroxybutyric Acid/pharmacology , Anticonvulsants/pharmacology , Brain/drug effects , Diet, Ketogenic , Epilepsy, Temporal Lobe , Mitochondria/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , 3-Hydroxybutyric Acid/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Electroencephalography , Ketone Bodies/pharmacology , Kv1.1 Potassium Channel/genetics , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Patch-Clamp Techniques
3.
Epilepsia ; 50(9): 2027-34, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19490051

ABSTRACT

INTRODUCTION: Seizures are known to perturb circadian rhythms in humans as well as in animal models of epilepsy. However, it is unknown whether treatment of the underlying epilepsy restores normal biologic rhythms. We asked whether: (1) seizure activity is characterized by diurnal rhythmicity, (2) chronically epileptic mice exhibit impaired rest-activity rhythms, and (3) treatment with the anticonvulsant ketogenic diet (KD) improves such perturbations. METHODS: Chronically epileptic Kcna1-null mice were fed either a standard diet (SD) or KD for 4 weeks and subjected to continuous video-EEG (electroencephalography) and actigraphy monitoring for 3-5 days to assess seizure activity and rest-activity cycles. RESULTS: Seizure activity in Kcna1-null mice demonstrated diurnal rhythmicity, peaking at zeitgeber (ZT)2.30 +/- 1.52. Rest-activity rhythms of epileptic mice were significantly disrupted. Whereas locomotor activity for wild-type mice peaked at ZT15.45 +/- 0.28 (ZT14:26-ZT16:51), peak activity of epileptic mice was more unpredictable, occurring over a 12.4 h range (ZT06:33-ZT18:57). In six of nine epileptic mice, peak activity was delayed to ZT17.42 +/- 0.38, whereas peak activity was advanced to ZT10.00 +/- 1.26 in the remaining mice. Treatment with the KD abolished seizure periodicity and restored the rest-activity rhythm to values resembling those of wild-type mice (i.e., activity peaking at ZT16.73 +/- 0.67). CONCLUSIONS: Kcna1-null mice experience seizures with 24-h periodicity and impaired circadian behavior. KD reduces the number and periodicity of seizures and restores normal behavioral rhythms, suggesting that this nonpharmacologic therapy may benefit biologic rhythm disturbances in epileptic patients.


Subject(s)
Circadian Rhythm/physiology , Diet, Ketogenic/methods , Mice, Knockout/genetics , Seizures/diet therapy , Animals , Behavior, Animal/physiology , Disease Models, Animal , Electroencephalography , Epilepsy/diet therapy , Humans , Kv1.1 Potassium Channel/genetics , Mice , Periodicity , Videotape Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...