Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 54(2): 349-62, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25489970

ABSTRACT

In halophilic archaea the photophobic response is mediated by the membrane-embedded 2:2 photoreceptor/-transducer complex SRII/HtrII, the latter being homologous to the bacterial chemoreceptors. Both systems bias the rotation direction of the flagellar motor via a two-component system coupled to an extended cytoplasmic signaling domain formed by a four helical antiparallel coiled-coil structure. For signal propagation by the HAMP domains connecting the transmembrane and cytoplasmic domains, it was suggested that a two-state thermodynamic equilibrium found for the first HAMP domain in NpSRII/NpHtrII is shifted upon activation, yet signal propagation along the coiled-coil transducer remains largely elusive, including the activation mechanism of the coupled kinase CheA. We investigated the dynamic and structural properties of the cytoplasmic tip domain of NpHtrII in terms of signal transduction and putative oligomerization using site-directed spin labeling electron paramagnetic resonance spectroscopy. We show that the cytoplasmic tip domain of NpHtrII is engaged in a two-state equilibrium between a dynamic and a compact conformation like what was found for the first HAMP domain, thus strengthening the assumption that dynamics are the language of signal transfer. Interspin distance measurements in membranes and on isolated 2:2 photoreceptor/transducer complexes in nanolipoprotein particles provide evidence that archaeal photoreceptor/-transducer complexes analogous to chemoreceptors form trimers-of-dimers or higher-order assemblies even in the absence of the cytoplasmic components CheA and CheW, underlining conservation of the overall mechanistic principles underlying archaeal phototaxis and bacterial chemotaxis systems. Furthermore, our results revealed a significant influence of the NpHtrII signaling domain on the NpSRII photocycle kinetics, providing evidence for a conformational coupling of SRII and HtrII in these complexes.


Subject(s)
Archaea/chemistry , Archaeal Proteins/chemistry , Carotenoids/chemistry , Archaea/metabolism , Archaeal Proteins/metabolism , Carotenoids/metabolism , Electron Spin Resonance Spectroscopy , Models, Molecular , Protein Multimerization , Protein Structure, Tertiary , Signal Transduction , Spin Labels , Thermodynamics
2.
ACS Appl Mater Interfaces ; 7(1): 287-300, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25495167

ABSTRACT

With the use of two transparent electrodes, organic polymer-fullerene solar cells are semitransparent and may be combined to parallel-connected multijunction devices or used for innovative applications like power-generating windows. A challenging issue is the optimization of the electrodes, to combine high transparency with adequate electric properties. In the present work, we study the potential of sputter-deposited aluminum-doped zinc oxide as an alternative to the widely used but relatively expensive indium tin oxide (ITO) as cathode material in semitransparent polymer-fullerene solar cells. Concerning the anode, we utilized an insulator-metal-insulator structure based on ultrathin Au films embedded between two evaporated MoO3 layers, with the outer MoO3 film (capping layer) serving as a light coupling layer. The performance of the ITO-free semitransparent polymer-fullerene solar cells was systematically studied as dependent on the thickness of the capping layer and the active layer as well as the illumination direction. These variations were found to have strong impact on the obtained photocurrent densities. We performed optical simulations of the electric field distribution within the devices using the transfer-matrix method, to analyze the origin of the current density variations in detail and provide deep insight into the device physics. With the conventional absorber materials studied here, optimized ITO-free and semitransparent devices reached 2.0% power conversion efficiency and a maximum optical transmission of 60%, with the device concept being potentially transferable to other absorber materials.

3.
J Cell Sci ; 126(Pt 1): 103-16, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23038773

ABSTRACT

Mitochondria are involved in cellular energy supply, signaling and apoptosis. Their ability to fuse and divide provides functional and morphological flexibility and is a key feature in mitochondrial quality maintenance. To study the impact of mitochondrial fusion/fission on the reorganization of inner membrane proteins, oxidative phosphorylation (OXPHOS) complexes in mitochondria of different HeLa cells were tagged with fluorescent proteins (GFP and DsRed-HA), and cells were fused by polyethylene glycol treatment. Redistribution of the tagged OXPHOS complexes was then followed by means of immunoelectron microscopy, two color super-resolution fluorescence microscopy and single molecule tracking. In contrast to outer membrane and matrix proteins, which mix quickly and homogeneously upon mitochondrial fusion, the mixing of inner membrane proteins was decelerated. Our data suggest that the composition of cristae is preserved during fusion of mitochondria and that cristae with mixed OXPHOS complexes are only slowly and successively formed by restricted diffusion of inner membrane proteins into existing cristae. The resulting transitory mosaic composition of the inner mitochondrial membrane illuminates mitochondrial heterogeneity and potentially is linked to local differences in function and membrane potential.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , HeLa Cells , Humans , Microscopy, Confocal , Microscopy, Immunoelectron , Mitochondria/ultrastructure , Mitochondrial Dynamics/genetics , Mitochondrial Dynamics/physiology , Mitochondrial Membranes/ultrastructure , Oxidative Phosphorylation
4.
Nano Lett ; 12(2): 610-6, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22201267

ABSTRACT

While detailed information on the nanoscale-organization of proteins within intracellular membranes has emerged from electron microcopy, information on their spatiotemporal dynamics is scarce. By use of a photostable rhodamine attached specifically to Halo-tagged proteins in mitochondrial membranes, we were able to track and localize single protein complexes such as Tom20 and ATP synthase in suborganellar structures in live cells. Individual membrane proteins in the inner and outer membrane of mitochondria were imaged over long time periods with localization precisions below 15 nm. Projection of single molecule trajectories revealed diffusion-restricting microcompartments such as individual cristae in mitochondria. At the same time, protein-specific diffusion characteristics within different mitochondrial membranes could be extracted.


Subject(s)
Adenosine Triphosphatases/chemistry , Membrane Transport Proteins/chemistry , Mitochondria/chemistry , Nanostructures/chemistry , Receptors, Cell Surface/chemistry , Adenosine Triphosphatases/metabolism , Cell Membrane/chemistry , HeLa Cells , Humans , Microscopy, Electron , Mitochondrial Precursor Protein Import Complex Proteins , Rhodamines/chemistry
6.
J Morphol ; 270(11): 1296-310, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19530094

ABSTRACT

The phylogenetic position of Orbiniidae within Annelida is unresolved. Conflicting hypotheses place them either in a basal taxon Scolecida, close to Spionida, or in a basal position in Aciculata. Because Aciculata have a specific type of eye, the photoreceptive organs in the orbiniid Scoloplos armiger were investigated to test these phylogenetic hypotheses. Two different types of prostomial photoreceptor-like sense organs were found in juveniles and one additional in subadults. In juveniles there are four ciliary photoreceptor-like phaosomes with unbranched cilia and two pigmented eyes. The paired pigmented eyes lie beside the brain above the circumoesophageal connectives. Each consists of one pigmented cell, one unpigmented supportive cell and three everse rhabdomeric sensory cells with vestigial cilia. During development the number of phaosomes increases considerably and numerous unpigmented sense organs appear consisting of one rhabdomeric photoreceptor cell and one supportive cell. The development and morphology of the pigmented eyes of S. armiger suggest that they represent miniaturized eyes of the phyllodocidan type of adult eye rather than persisting larval eyes resulting in small inverse eyes typical of Scolecida. Moreover, the structure of the brain indicates a loss of the palps. Hence, a closer relationship of Orbiniidae to Phyllodocida is indicated. Due to a still extensive lack of ultrastructural data among polychaetes this conclusion cannot be corroborated by considering the structure of the unpigmented ciliary and rhabdomeric photoreceptor-like sense organs.


Subject(s)
Annelida , Phylogeny , Pigmentation , Animals , Annelida/anatomy & histology , Annelida/classification , Annelida/physiology , Central Nervous System/anatomy & histology , Central Nervous System/physiology , Cilia/metabolism , Cilia/ultrastructure , Eye/embryology , Eye/growth & development , Eye/ultrastructure , Photoreceptor Cells, Invertebrate/physiology , Photoreceptor Cells, Invertebrate/ultrastructure , Sense Organs/anatomy & histology , Sense Organs/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...