Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom Adv Clin Lab ; 20: 42-47, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34820670

ABSTRACT

Heavy-labelled internal standard (IS) compounds are commonly used in liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays to control for stochastic and systematic variation. Identifying samples that suffer from unwanted variation is critically important in order to avoid factitiously inaccurate results. Current approaches for outlier detection typically employ arbitrary thresholds and ignore systematic drift. To improve this, we applied robust linear mixed-effects models (LMMs) to capture the within- and between-run variability in IS signal and generate data-driven acceptance ranges for routine use. Data from in-house LC-MS/MS assays for 25-hydroxyvitamin D3 and D2 and prednisolone were retrospectively collected. The variation in the percentage deviation of the internal standard area from the mean of the calibrators was modelled through the use of robust LMMs. The fitted LMMs revealed significant positive drift in IS signal over the analytical runs for vitamin D, with slope coefficients of 0.118 (95% CI: 0.098, 0.138) and 0.192 (0.168, 0.215) for D3 and D2, respectively. In contrast, the models for prednisolone demonstrated a significant negative drift in IS signal, with a slope coefficient of -0.164 (-0.297, -0.036). Non-parametric, cluster bootstrap resampling enabled us to define acceptance ranges for use in future assays. Here, we have described a computational approach to extensively characterise the variation in IS signal in routinely-performed LC-MS/MS assays. This approach facilitates a robust quality assessment of IS outliers in routine practice and thus has the potential to improve patient safety. Importantly, this approach is applicable to other MS assays where linear variation in IS signal is observed.

2.
Oncogene ; 36(19): 2762-2774, 2017 05 11.
Article in English | MEDLINE | ID: mdl-27991931

ABSTRACT

Compounds targeting phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling are being investigated in multiple clinical settings, but drug resistance may reduce their benefit. Compound rechallenge after drug holidays can overcome such resistance, yet little is known about the impact of drug holidays on cell biochemistry. We found that PI3K inhibitor (PI3Ki)-resistant cells cultured in the absence of PI3Ki developed a proliferative defect, increased oxygen consumption and accumulated reactive oxygen species (ROS), leading to lactate production through hypoxia-inducible factor-1α. This metabolic imbalance was reversed by mammalian target of rapamycin complex 1 (mTORC1) inhibitors. Interestingly, neither AKT nor c-MYC was involved in mediating the metabolic phenotype, despite the latter contributing to resistant cells' proliferation. These data suggest that an AKT-independent PI3K/mTORC1 axis operates in these cells. The excessive ROS hampered cell division, and the metabolic phenotype made resistant cells more sensitive to hydrogen peroxide and nutrient starvation. Thus, the proliferative defect of PI3Ki-resistant cells during drug holidays is caused by defective metabolic adaptation to chronic PI3K/mTOR pathway inhibition. This metabolic imbalance may open the therapeutic window for challenge with metabolic drugs during drug holidays.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/administration & dosage , Phosphoinositide-3 Kinase Inhibitors , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Humans , MCF-7 Cells , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/genetics , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...