Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(48): 41312-41317, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30421599

ABSTRACT

Solution-processed TiO2 and other metal-oxide electron-transporting layers (ETLs) for perovskite solar cells commonly require high-temperature annealing (>450 °C), causing the underlying indium-tin oxide (ITO) to degrade and inhibiting the use of flexible plastic substrates, such as poly(ethylene naphthalate). Laser-based solar cell manufacturing is attracting increased interest and can enable rapid and low-temperature fabrication of perovskite solar cells. By using novel pulsed ultraviolet laser processing on the solution-processed TiO2, we demonstrate a champion 17.1% efficient flexible perovskite solar cell. We can independently control the annealing of the ETL without affecting the underlying ITO or substrate due to the shallow absorption depth and short pulse duration of the laser. Ellipsometry and X-ray photoelectron spectroscopy verify that the laser-annealed TiO2 thin film is stoichiometric and relatively denser than the thermally annealed control sample. The efficiencies of the laser-processed devices exceeded those fabricated via hot plate, but with the added benefit of a high-throughput, low-temperature, and flexible-substrate-friendly process.

2.
J Phys Chem Lett ; 8(14): 3206-3210, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28656769

ABSTRACT

In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiOx layer that performs as well as the high temperature TiO2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiOx is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO2. Flexible perovskite solar cells that employ a room-temperature TiOx layer with a power conversion efficiency of 14.3% are demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...