Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 84(21): 9169-75, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23066794

ABSTRACT

Analytical capabilities to identify dyes associated with structurally robust wool fibers would critically assist crime-scene and explosion-scene forensics. Nondestructive separation of dyes from wool, removal of contaminants, and dye analysis by MALDI- or ESI-MS, were achieved in a single-pot, ionic liquid-based method. Ionic liquids (ILs) that readily denature the wool α-keratin structure have been identified and are conducive to small volume, high-throughput analysis for accelerated threat-response times. Wool dyed with commercial or natural, plant-based dyes have unique signatures that allow classification and matching of samples and identification of dyestuffs. Wool released 0.005 mg of dye per mg of dyed wool into the IL, allowing for analysis of single-thread sample sizes. The IL + dye mixture promotes sufficient ionization in MALDI-MS: addition of common MALDI matrices does not improve analysis of anionic wool dyes. An inexpensive, commercially available tetrabutylphosponium chloride IL was discovered to be capable of denaturing wool and was determined to be the most effective for this readily fieldable method.


Subject(s)
Coloring Agents/analysis , Coloring Agents/isolation & purification , Ionic Liquids/chemistry , Wool/chemistry , Animals , Coloring Agents/chemistry , Limit of Detection , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Chem Commun (Camb) ; (4): 447-9, 2008 Jan 28.
Article in English | MEDLINE | ID: mdl-18188463

ABSTRACT

A series of ionic liquids containing different paramagnetic anions have been prepared and all show paramagnetic behavior with potential applications for magnetic and electrochromic switching as well as novel magnetic transport; also, the tetraalkylphosphonium-based ionic liquids reveal anomalous magnetic behavior.

3.
Chem Commun (Camb) ; (24): 2554-6, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16779475

ABSTRACT

The non-flammability of ionic liquids (ILs) is often highlighted as a safety advantage of ILs over volatile organic compounds (VOCs), but the fact that many ILs are not flammable themselves does not mean that they are safe to use near fire and/or heat sources; a large group of ILs (including commercially available ILs) are combustible due to the nature of their positive heats of formation, oxygen content, and decomposition products.

4.
J Phys Chem A ; 110(3): 868-74, 2006 Jan 26.
Article in English | MEDLINE | ID: mdl-16419983

ABSTRACT

A new method of obtaining molecular reorientational dynamics from 13C spin-lattice relaxation data of aromatic carbons in viscous solutions is applied to 13C relaxation data of both the cation and anion in the ionic liquid, 1-ethyl-3-methylimidazolium butanesulfonate ([EMIM]BSO3). 13C pseudorotational correlation times are used to calculate corrected maximum NOE factors from a combined isotropic dipolar and nuclear Overhauser effect (NOE) equation. These corrected maximum NOE factors are then used to determine the dipolar relaxation rate part of the total relaxation rate for each aromatic 13C nucleus in the imidazolium ring. Rotational correlation times are compared with viscosity data and indicate several [EMIM]BSO3 phase changes over the temperature range from 278 to 328 K. Modifications of the Stokes-Einstein-Debye (SED) model are used to determine molecular radii for the 1-ethyl-3-methylimidazolium cation. The Hu-Zwanzig correction yields a cationic radius that compares favorably with a DFT gas-phase calculation, B3LYP/(6-311+G(2d,p)). Chemical shift anisotropy values, Deltasigma, are obtained for the ring and immediately adjacent methylene and methyl carbons in the imidazolium cation and for the three carbon atoms nearest to the sulfonate group in the anion.

SELECTION OF CITATIONS
SEARCH DETAIL
...