Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Genes Brain Behav ; 19(7): e12679, 2020 09.
Article in English | MEDLINE | ID: mdl-32488937

ABSTRACT

The imprinted genes Grb10 and Nesp influence impulsive behavior on a delay discounting task in an opposite manner. A recently developed theory suggests that this pattern of behavior may be representative of predicted effects of imprinted genes on tolerance to risk. Here we examine whether mice lacking paternal expression of Grb10 show abnormal behavior across a number of measures indicative of risk-taking. Although Grb10+/p mice show no difference from wild type (WT) littermates in their willingness to explore a novel environment, their behavior on an explicit test of risk-taking, namely the Predator Odor Risk-Taking task, is indicative of an increased willingness to take risks. Follow-up tests suggest that this risk-taking is not simply because of a general decrease in fear, or a general increase in motivation for a food reward, but reflects a change in the trade-off between cost and reward. These data, coupled with previous work on the impulsive behavior of Grb10+/p mice in the delayed reinforcement task, and taken together with our work on mice lacking maternal Nesp, suggest that maternally and paternally expressed imprinted genes oppositely influence risk-taking behavior as predicted.


Subject(s)
GRB10 Adaptor Protein/genetics , Genomic Imprinting , Risk-Taking , Animals , Fear , Female , Male , Mice , Motivation
2.
Philos Trans R Soc Lond B Biol Sci ; 374(1766): 20180142, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30966914

ABSTRACT

Genomic imprinting, where an allele's expression pattern depends on its parental origin, is thought to result primarily from an intragenomic evolutionary conflict. Imprinted genes are widely expressed in the brain and have been linked to various phenotypes, including behaviours related to risk tolerance. In this paper, we analyse a model of evolutionary bet-hedging in a system with imprinted gene expression. Previous analyses of bet-hedging have shown that natural selection may favour alleles and traits that reduce reproductive variance, even at the expense of reducing mean reproductive success, with the trade-off between mean and variance depending on the population size. In species where the sexes have different reproductive variances, this bet-hedging trade-off differs between maternally and paternally inherited alleles. Where males have the higher reproductive variance, alleles are more strongly selected to reduce variance when paternally inherited than when maternally inherited. We connect this result to phenotypes connected with specific imprinted genes, including delay discounting and social dominance. The empirical patterns are consistent with paternally expressed imprinted genes promoting risk-averse behaviours that reduce reproductive variance. Conversely, maternally expressed imprinted genes promote risk-tolerant, variance-increasing behaviours. We indicate how future research might further test the hypotheses suggested by our analysis. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.


Subject(s)
Biological Evolution , Gene Expression , Genomic Imprinting , Selection, Genetic , Alleles , Animals , Female , Male , Models, Genetic , Phenotype
3.
Oncotarget ; 9(32): 22243-22253, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29854275

ABSTRACT

Currently, drug development efforts and clinical trials to test them are often prioritized by targeting genes with high frequencies of somatic variants among tumors. However, differences in oncogenic mutation rate-not necessarily the effect the variant has on tumor growth-contribute enormously to somatic variant frequency. We argue that decoupling the contributions of mutation and cancer lineage selection to the frequency of somatic variants among tumors is critical to understanding-and predicting-the therapeutic potential of different interventions. To provide an indicator of that strength of selection and therapeutic potential, the frequency at which we observe a given variant across patients must be modulated by our expectation given the mutation rate and target size to provide an indicator of that strength of selection and therapeutic potential. Additionally, antagonistic and synergistic epistasis among mutations also impacts the potential therapeutic benefit of targeted drug development. Quantitative approaches should be fostered that use the known genetic architectures of cancer types, decouple mutation rate, and provide rigorous guidance regarding investment in targeted drug development. By integrating evolutionary principles and detailed mechanistic knowledge into those approaches, we can maximize our ability to identify those targeted therapies most likely to yield substantial clinical benefit.

4.
Genetics ; 209(1): 233-239, 2018 05.
Article in English | MEDLINE | ID: mdl-29563147

ABSTRACT

Imprinted genes are expressed from one parental allele only as a consequence of epigenetic events that take place in the mammalian germ line and are thought to have evolved through intragenomic conflict between parental alleles. We demonstrate, for the first time, oppositional effects of imprinted genes on brain and behavior. Specifically, we show that mice lacking paternal Grb10 make fewer impulsive choices, with no dissociable effects on a separate measure of impulsive action. Taken together with previous work showing that mice lacking maternal Nesp55 make more impulsive choices, this suggests that impulsive choice behavior is a substrate for the action of genomic imprinting. Moreover, the contrasting effect of these two genes suggests that impulsive choices are subject to intragenomic conflict and that maternal and paternal interests pull this behavior in opposite directions. Finally, these data may also indicate that an imbalance in expression of imprinted genes contributes to pathological conditions such as gambling and drug addiction, where impulsive behavior becomes maladaptive.


Subject(s)
Behavior, Animal , GRB10 Adaptor Protein/genetics , Gene Expression , Genomic Imprinting , Analysis of Variance , Animals , Fluorescent Antibody Technique , GRB10 Adaptor Protein/metabolism , Immunohistochemistry , Impulsive Behavior , Male , Mice
5.
PLoS Genet ; 12(4): e1006003, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27123867

ABSTRACT

A major goal of human genetics is to elucidate the genetic architecture of human disease, with the goal of fueling improvements in diagnosis and the understanding of disease pathogenesis. The degree to which epistasis, or non-additive effects of risk alleles at different loci, accounts for common disease traits is hotly debated, in part because the conditions under which epistasis evolves are not well understood. Using both theory and evolutionary simulation, we show that the occurrence of common diseases (i.e. unfit phenotypes with frequencies on the order of 1%) can, under the right circumstances, be expected to be driven primarily by synergistic epistatic interactions. Conditions that are necessary, collectively, for this outcome include a strongly non-linear phenotypic landscape, strong (but not too strong) selection against the disease phenotype, and "noise" in the genotype-phenotype map that is both environmental (extrinsic, time-correlated) and developmental (intrinsic, uncorrelated) and, in both cases, neither too little nor too great. These results suggest ways in which geneticists might identify, a priori, those disease traits for which an "epistatic explanation" should be sought, and in the process better focus ongoing searches for risk alleles.


Subject(s)
Epistasis, Genetic/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , Models, Genetic , Algorithms , Genetic Variation/genetics , Genetics, Population , Humans , Phenotype , Quantitative Trait Loci
6.
Bioessays ; 38(5): 482-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26990753

ABSTRACT

Three recent genome-wide studies in mice and humans have produced the most definitive map to date of genomic imprinting (gene expression that depends on parental origin) by incorporating multiple tissue types and developmental stages. Here, we explore the results of these studies in light of the kinship theory of genomic imprinting, which predicts that imprinting evolves due to differential genetic relatedness between maternal and paternal relatives. The studies produce a list of imprinted genes with around 120-180 in mice and ~100 in humans. The studies agree on broad patterns across mice and humans including the complex patterns of imprinted expression at loci like Igf2 and Grb10. We discuss how the kinship theory provides a powerful framework for hypotheses that can explain these patterns. Finally, since imprinting is rare in the genome despite predictions from the kinship theory that it might be common, we discuss evolutionary factors that could favor biallelic expression.


Subject(s)
Alleles , GRB10 Adaptor Protein/genetics , Genome , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , Models, Genetic , Animals , Biological Evolution , Female , Genetic Loci , Genome-Wide Association Study , Humans , Male , Mice , Organ Specificity , Species Specificity
7.
Proc Natl Acad Sci U S A ; 113(7): 1766-71, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26831113

ABSTRACT

How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides indirect access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here, we provide an empirical measure of semantic proximity between concepts using cross-linguistic dictionaries to translate words to and from languages carefully selected to be representative of worldwide diversity. These translations reveal cases where a particular language uses a single "polysemous" word to express multiple concepts that another language represents using distinct words. We use the frequency of such polysemies linking two concepts as a measure of their semantic proximity and represent the pattern of these linkages by a weighted network. This network is highly structured: Certain concepts are far more prone to polysemy than others, and naturally interpretable clusters of closely related concepts emerge. Statistical analysis of the polysemies observed in a subset of the basic vocabulary shows that these structural properties are consistent across different language groups, and largely independent of geography, environment, and the presence or absence of a literary tradition. The methods developed here can be applied to any semantic domain to reveal the extent to which its conceptual structure is, similarly, a universal attribute of human cognition and language use.


Subject(s)
Semantics , Humans
9.
Curr Biol ; 25(1): 1-9, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25532895

ABSTRACT

BACKGROUND: Concerted evolution is normally used to describe parallel changes at different sites in a genome, but it is also observed in languages where a specific phoneme changes to the same other phoneme in many words in the lexicon­a phenomenon known as regular sound change. We develop a general statistical model that can detect concerted changes in aligned sequence data and apply it to study regular sound changes in the Turkic language family. RESULTS: Linguistic evolution, unlike the genetic substitutional process, is dominated by events of concerted evolutionary change. Our model identified more than 70 historical events of regular sound change that occurred throughout the evolution of the Turkic language family, while simultaneously inferring a dated phylogenetic tree. Including regular sound changes yielded an approximately 4-fold improvement in the characterization of linguistic change over a simpler model of sporadic change, improved phylogenetic inference, and returned more reliable and plausible dates for events on the phylogenies. The historical timings of the concerted changes closely follow a Poisson process model, and the sound transition networks derived from our model mirror linguistic expectations. CONCLUSIONS: We demonstrate that a model with no prior knowledge of complex concerted or regular changes can nevertheless infer the historical timings and genealogical placements of events of concerted change from the signals left in contemporary data. Our model can be applied wherever discrete elements­such as genes, words, cultural trends, technologies, or morphological traits­can change in parallel within an organism or other evolving group.


Subject(s)
Cultural Evolution , Phonetics , Humans , Models, Statistical , Phylogeny
10.
PLoS Biol ; 12(2): e1001800, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24586115

ABSTRACT

Mammalian development involves significant interactions between offspring and mother. But is this interaction a carefully coordinated effort by two individuals with a common goal--offspring survival? Or is it an evolutionary battleground (a central idea in our understanding of reproduction). The conflict between parents and offspring extends to an offspring's genes, where paternally inherited genes favor demanding more from the mother, while maternally inherited genes favor restraint. This "intragenomic conflict" (among genes within a genome) is the dominant evolutionary explanation for "genomic imprinting." But a new study in PLOS Biology provides support for a different perspective: that imprinting might facilitate coordination between mother and offspring. According to this "coadaptation theory," paternally inherited genes might be inactivated because maternally inherited genes are adapted to function harmoniously with the mother. As discussed in this article, the growth effects associated with the imprinted gene Grb10 are consistent with this idea, but it remains to be seen just how general the pattern is.


Subject(s)
Body Size/genetics , GRB10 Adaptor Protein/genetics , Animals , Female
11.
Evol Med Public Health ; 2014(1): 63-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24632048
12.
Trends Genet ; 27(7): 251-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21683468

ABSTRACT

Genomic imprinting is the differential expression of an allele based on the parent of origin. Recent transcriptome-wide evaluations of the number of imprinted genes reveal complex patterns of imprinted expression among developmental stages and cell types. Such data demand a comprehensive evolutionary framework in which to understand the effect of natural selection on imprinted gene expression. We present such a framework for how asymmetries in demographic parameters and fitness effects can lead to the evolution of genomic imprinting and place recent theoretical advances in this framework. This represents a modern interpretation of the kinship theory, is well suited to studying populations with complex social interactions, and provides predictions which can be tested with forthcoming transcriptomic data. To understand the intricate phenotypic patterns that are emerging from the recent deluge of data, future investigations of genomic imprinting will require integrating evolutionary theory, transcriptomic data, developmental and functional genetics, and natural history.


Subject(s)
Evolution, Molecular , Genetic Fitness , Genomic Imprinting , Animals , Models, Genetic , Phenotype , Selection, Genetic
13.
Prog Mol Biol Transl Sci ; 101: 401-45, 2011.
Article in English | MEDLINE | ID: mdl-21507360

ABSTRACT

Genomic imprinting is the phenomenon where the expression of a locus differs between the maternally and paternally inherited alleles. Typically, this manifests as transcriptional silencing of one of the alleles, although many genes are imprinted in a tissue- or isoform-specific manner. Diseases associated with imprinted genes include various cancers, disorders of growth and metabolism, and disorders in neurodevelopment, cognition, and behavior, including certain major psychiatric disorders. In many cases, the disease phenotypes associated with dysfunction at particular imprinted loci can be understood in terms of the evolutionary processes responsible for the origin of imprinting. Imprinted gene expression represents the outcome of an intragenomic evolutionary conflict, where natural selection favors different expression strategies for maternally and paternally inherited alleles. This conflict is reasonably well understood in the context of the early growth effects of imprinted genes, where paternally inherited alleles are selected to place a greater demand on maternal resources than are maternally inherited alleles. Less well understood are the origins of imprinted gene expression in the brain, and their effects on cognition and behavior. This chapter reviews the genetic diseases that are associated with imprinted genes, framed in terms of the evolutionary pressures acting on gene expression at those loci. We begin by reviewing the phenomenon and evolutionary origins of genomic imprinting. We then discuss diseases that are associated with genetic or epigenetic defects at particular imprinted loci, many of which are associated with abnormalities in growth and/or feeding behaviors that can be understood in terms of the asymmetric pressures of natural selection on maternally and paternally inherited alleles. We next described the evidence for imprinted gene effects on adult cognition and behavior, and the possible role of imprinted genes in the etiology of certain major psychiatric disorders. Finally, we conclude with a discussion of how imprinting, and the evolutionary-genetic conflicts that underlie it, may enhance both the frequency and morbidity of certain types of diseases.


Subject(s)
Genetic Predisposition to Disease , Genomic Imprinting , Humans , Mental Disorders/genetics
14.
Evolution ; 65(2): 537-53, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21029079

ABSTRACT

Genomic imprinting is the phenomenon in which the expression pattern of an allele depends on its parental origin. When maternally expressed and paternally expressed imprinted loci affect the same trait, the result is an arms race, with each locus under selection to increase its level of expression. This article develops a model of the deleterious consequences of this escalation, deriving from an increase in the variance in gene expression level, and resulting increase in phenotypic variance in the population. This phenomenon is referred to here as "conflict-induced decanalization." Modifiers that canalize gene expression are selectively favored, but these induce further escalation from both loci, resulting in a net increase in phenotypic variance and a reduction in population mean fitness. This results in a feedback loop, where increasing canalization of gene expression leads to increasing decanalization of the phenotype. This phenomenon may explain the surprisingly high frequency of certain diseases. Disorders to which this decanalization process might contribute include growth- and metabolism-related phenomena such as preterm birth, as well as certain major psychiatric disorders, including schizophrenia and autism.


Subject(s)
Genomic Imprinting , Mental Disorders/genetics , Models, Genetic , Evolution, Molecular , Female , Fetal Development , Gene Expression , Humans , Linear Models , Phenotype , Pregnancy
15.
Evolution ; 64(1): 142-51, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19703222

ABSTRACT

At a locus subject to genomic imprinting, the expression pattern of an allele depends on its parent of origin. Typically, one allele is expressed while the other is transcriptionally silent, and natural selection at the locus will be driven by the inclusive fitness of the active allele. For some aspects of phenotype, the relevant fitness function differs between maternally and paternally derived alleles, so that maternally and paternally expressed imprinted loci become involved in an intragenomic, interlocus conflict. Here I consider the consequences of such a conflict between loci with pleiotropic effects and show that phenotypes are driven away from their optimal values, resulting in a maladaptive, but selectively favored, evolutionary trajectory. The extent to which the evolutionarily stable state departs from the optimal phenotype depends only linearly on the magnitude of the conflict, but is extremely sensitive to the relationship between the pleiotropic effects of the two loci. Thus, even a small intragenomic conflict can have significant deleterious consequences for multiple aspects of phenotype. This result has potential consequences for our understanding of disease states that occur at high frequency in the population, including several common psychological and behavioral disorders such as schizophrenia, bipolar disorder, major depression, and autism.


Subject(s)
Biological Evolution , Genomic Imprinting , Animals , Epigenesis, Genetic
16.
Adv Exp Med Biol ; 626: ix-xii, 2008.
Article in English | MEDLINE | ID: mdl-18372786
17.
Adv Exp Med Biol ; 626: 101-15, 2008.
Article in English | MEDLINE | ID: mdl-18372794

ABSTRACT

Imprinted genes have been associated with a wide range of diseases. Many of these diseases have symptoms that can be understood in the context of the evolutionary forces that favored imprinted expression at these loci. Modulation of perinatal growth and resource acquisition has played a central role in the evolution of imprinting and many of the diseases associated with imprinted genes involve some sort of growth or feeding disorder. In the first part of this chapter, we discuss the relationship between the evolution of imprinting and the clinical manifestations of imprinting-associated diseases. In the second half, we consider the variety of processes that can disrupt imprinted gene expression and function. We ask specifically if there is reason to believe that imprinted genes are particularly susceptible to deregulation-and whether a disruption of an imprinted gene is more likely to have deleterious consequences than a disruption of an unimprinted gene. There is more to a gene than its DNA sequence. C. H. Waddington used the term "epigenetic" to describe biological differences between tissues that result from the process of development. Waddington needed a new term to describe this variation which was neither the result of genotypic differences between the cells nor well described as phenotypic variation. We now understand that heritable modifications of the DNA--such as cytosine methylation--and aspects of chromatin structure--including histone modifications--are the mechanisms underlying what Waddington called the "epigenotype." Epigenetic modifications are established in particular cell lines during development and are responsible for the patterns of gene expression seen in different tissue types. In contemporary usage, the term epigenetic refers to heritable changes in gene expression that are not coded in the DNA sequence itself. In recent years, much attention has been paid to a particular type of epigenetic variation: genomic imprinting. In the case of imprinting, the maternally and paternally inherited genes within a single cell have epigenetic differences that result in divergent patterns of gene expression. In the simplest scenario, only one of the two alleles at an imprinted locus is expressed. In other cases, an imprinted locus can include a variety of maternally expressed, paternally expressed and biallelically expressed transcripts. Some of these transcripts produce different proteins through alternate splicing, while others produce noncoding RNA transcripts. Genomic imprinting can also interact with the "epigenotype" in Waddington's sense: many genes are imprinted in a tissue-specific manner, with monoallelic expression in some cell types and biallelic expression in others. Other chapters in this volume cover our current understanding of the mechanisms of imprinting, the phenotypic effects of imprinted genes in mammals and what we know about imprinting in plants. In this chapter we discuss the link between imprinted genes and human disease. First, we consider the phenotypes associated with imprinted genes and ask whether the disorders associated with these genes share a common motif. Second, we consider the nature and frequency of mutations of imprinted genes. We ask whether we should expect that imprinted genes are particularly fragile. That is, are they more likely to undergo mutation and/or are mutations of imprinted genes particularly likely to result in human disease? In general we consider how the field of evolutionary medicine--the use of evolution to understand why our body's design allows for the existence of disease at all--might contribute to our comprehension of disorders linked to genomic imprinting.


Subject(s)
Biological Evolution , Disease/etiology , Genomic Imprinting/genetics , Humans
18.
Curr Opin Genet Dev ; 16(6): 611-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17067791

ABSTRACT

The increasing availability of large-scale genetic datasets has made it possible to ask detailed questions about the structure of human genetic diversity, and what that structure can teach us about human demographic history. Global, multi-locus analyses have suggested that human genetic diversity may fall into clusters that correspond approximately to continental origin. Detailed comparisons of mitochondrial DNA and the Y chromosome have revealed a history of sex-biased migration patterns that can vary widely across human populations. These patterns can be understood, however, when we incorporate our knowledge of local histories and cultural practices into our genetic analyses.


Subject(s)
Emigration and Immigration , Genetic Variation , Sex Characteristics , Databases, Genetic , Female , Genetics, Medical , Humans , Male , Marriage
19.
J Theor Biol ; 242(3): 643-51, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-16765385

ABSTRACT

Genomic imprinting (parent-of-origin-dependent gene regulation) is associated with intra-genomic evolutionary conflict over the optimal pattern of gene expression. Most theoretical models of imprinting focus on the conflict between the maternally and paternally derived alleles at an imprinted locus. Recently, however, more attention has been focused on multi-directional conflicts involving not only the imprinted gene itself, but also the genes that encode the regulatory machinery responsible for establishing and maintaining imprinted gene expression. In this paper, I examine the conflict involved in epigenetic reprogramming of imprinted genes in early mammalian embryonic development. In the earliest phase of development, maternal-store proteins are responsible for most regulatory activity in the embryo. These proteins are under selection to maximize the mother's inclusive fitness, which is not identical to that of either of the sets of genes present in the embryo. Both the maternally and paternally derived genomes in the embryo favor maintenance of the epigenetic modifications established in the female and male germlines, respectively. Maternal-store proteins favor maintenance of some of these modifications, but erasure of others. Here I consider the logical structure of the machinery responsible for these two activities. Methylation maintenance is most effectively performed by AND-linked architectures, which may explain the unusual trafficking behavior of the oocyte-specific DNA methyltransferase, Dnmt1o. By contrast, demethylation is better supported by OR-linked architectures, which may explain the difficulty in identifying the factor(s) responsible for the active demethylation of the paternal genome following fertilization.


Subject(s)
Computer Simulation , DNA Methylation , Gene Expression Regulation, Developmental , Genomic Imprinting , Mammals/embryology , Models, Genetic , Alleles , Animals , Embryonic Development , Female , Humans , Male , Pregnancy
20.
Bioessays ; 28(3): 290-300, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16479583

ABSTRACT

Different patterns of mitochondrial and Y-chromosome diversity have been cited as evidence of long-term patrilocality in human populations. However, what patterns are expected depends on the nature of the sampling scheme. Samples from a local region reveal only the recent demographic history of that region, whereas sampling over larger geographic scales accesses older demographic processes. A historical change in migration becomes evident first at local geographic scales, and alters global patterns of genetic diversity only after sufficient time has passed. Analysis of forager populations in the ethnographic record suggests that patrilocality may not have predominated among pre-agricultural humans. The higher female migration rate inferred by some genetic studies may reflect a shift to patrilocality in association with the emergence of agriculture. A recent global survey does not show the expected effects of higher female migration, possibly because the sampling scheme used for this study is accessing pre-agricultural human migration patterns. In this paper, we show how the demographic shift associated with agriculture might affect genetic diversity over different spatial scales. We also consider the prospects for studying sex-biased migration using the X-linked and autosomal markers. These multi-locus comparisons have the potential of providing more robust estimates of sex differences than Y-linked and mitochondrial data, but only if a very large number of loci are included in the analysis.


Subject(s)
Emigration and Immigration , Genetics, Population , Sex Characteristics , Animals , Chromosomes, Human, X , Chromosomes, Human, Y , DNA, Mitochondrial , Female , Genetic Variation , Geography , Humans , Models, Genetic , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...