Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 178: 108045, 2023 08.
Article in English | MEDLINE | ID: mdl-37352581

ABSTRACT

BACKGROUND: Few studies investigated the impact of particulate matter (PM2.5) on some symptom exacerbations that are not perceived as severe enough to search for medical assistance. We aimed to study the association of short-term daily total PM2.5 exposure with work loss due to sickness among adults living in California. METHODS: We included 44,544 adult respondents in the workforce from 2015 to 2018 California Health Interview Survey data. Daily total PM2.5 concentrations were linked to respondents' home addresses from continuous spatial surfaces of PM2.5 generated by a geostatistical surfacing algorithm. We estimated the effect of a 2-week average of daily total PM2.5 exposure on work loss using logistic regression models. RESULTS: About 1.69% (weighted percentage) of adult respondents reported work loss in the week before the survey interview. The odds ratio of work loss was 1.45 (odds ratio [OR] = 1.45, 95% confidence interval [CI]: 1.03, 2.03) when a 2-week average of daily total PM2.5 exposure was higher than 12 µg/m3. The OR for work loss was 1.05 (95% CI: 0.98, 1.13) for each 2.56ug/m3 increase in the 2-week average of daily total PM2.5 exposure, and became stronger among those who were highly exposed to wildfire smoke (OR = 1.06, 95% CI: 1.00, 1.13), compared to those with lower wildfire smoke exposure (OR = 1.04, 95% CI: 0.79, 1.39). CONCLUSIONS: Our findings suggest that short-term ambient PM2.5 exposure is positively associated with work loss due to sickness and the association was stronger among those with higher wildfire smoke exposure. It also indicated that the current federal and state PM2.5 standards (annual average of 12 µg/m3) could be further strengthened to protect the health of the citizens of California.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Humans , Air Pollutants/adverse effects , California , Environmental Exposure/adverse effects , Logistic Models , Particulate Matter/adverse effects , Particulate Matter/analysis , Smoke/adverse effects , Adult
2.
Int J Wildland Fire ; 31(2): 193-211, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35875325

ABSTRACT

Air quality models are used to assess the impact of smoke from wildland fires, both prescribed and natural, on ambient air quality and human health. However, the accuracy of these models is limited by uncertainties in the parametrisation of smoke plume injection height (PIH) and its vertical distribution. We compared PIH estimates from the plume rise method (Briggs) in the Community Multiscale Air Quality (CMAQ) modelling system with observations from the 2013 California Rim Fire and 2017 prescribed burns in Kansas. We also examined PIHs estimated using alternative plume rise algorithms, model grid resolutions and temporal burn profiles. For the Rim Fire, the Briggs method performed as well or better than the alternatives evaluated (mean bias of less than ±5-20% and root mean square error lower than 1000 m compared with the alternatives). PIH estimates for the Kansas prescribed burns improved when the burn window was reduced from the standard default of 12 h to 3 h. This analysis suggests that meteorological inputs, temporal allocation and heat release are the primary drivers for accurately modelling PIH.

3.
Curr Environ Health Rep ; 9(3): 366-385, 2022 09.
Article in English | MEDLINE | ID: mdl-35524066

ABSTRACT

PURPOSE OF REVIEW: Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. RECENT FINDINGS: Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice.


Subject(s)
Air Pollution , Wildfires , Child , Environmental Exposure/adverse effects , Environmental Justice , Forests , Humans , Smoke/adverse effects , Smoke/analysis , United States
4.
Int J Wildland Fire ; 27(10)2018.
Article in English | MEDLINE | ID: mdl-33424209

ABSTRACT

Wildland fire emissions are routinely estimated in the US Environmental Protection Agency's National Emissions Inventory, specifically for fine particulate matter (PM2.5) and precursors to ozone (O3); however, there is a large amount of uncertainty in this sector. We employ a brute-force zero-out sensitivity method to estimate the impact of wildland fire emissions on air quality across the contiguous US using the Community Multiscale Air Quality (CMAQ) modelling system. These simulations are designed to assess the importance of wildland fire emissions on CMAQ model performance and are not intended for regulatory assessments. CMAQ ver. 5.0.1 estimated that fires contributed 11% to the mean PM2.5 and less than 1% to the mean O3 concentrations during 2008-2012. Adding fires to CMAQ increases the number of 'grid-cell days' with PM2.5 above 35 µg m-3 by a factor of 4 and the number of grid-cell days with maximum daily 8-h average O3 above 70 ppb by 14%. Although CMAQ simulations of specific fires have improved with the latest model version (e.g. for the 2008 California wildfire episode, the correlation r = 0.82 with CMAQ ver. 5.0.1 v. r = 0.68 for CMAQ ver. 4.7.1), the model still exhibits a low bias at higher observed concentrations and a high bias at lower observed concentrations. Given the large impact of wildland fire emissions on simulated concentrations of elevated PM2.5 and O3, improvements are recommended on how these emissions are characterised and distributed vertically in the model.

SELECTION OF CITATIONS
SEARCH DETAIL
...