Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 55(Pt 4): 769-781, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974737

ABSTRACT

Using the Fisher information (FI), the design of neutron reflectometry experiments can be optimized, leading to greater confidence in parameters of interest and better use of experimental time [Durant, Wilkins, Butler & Cooper (2021). J. Appl. Cryst. 54, 1100-1110]. In this work, the FI is utilized in optimizing the design of a wide range of reflectometry experiments. Two lipid bilayer systems are investigated to determine the optimal choice of measurement angles and liquid contrasts, in addition to the ratio of the total counting time that should be spent measuring each condition. The reduction in parameter uncertainties with the addition of underlayers to these systems is then quantified, using the FI, and validated through the use of experiment simulation and Bayesian sampling methods. For a 'one-shot' measurement of a degrading lipid monolayer, it is shown that the common practice of measuring null-reflecting water is indeed optimal, but that the optimal measurement angle is dependent on the deuteration state of the monolayer. Finally, the framework is used to demonstrate the feasibility of measuring magnetic signals as small as 0.01 µB per atom in layers only 20 Šthick, given the appropriate experimental design, and that the time to reach a given level of confidence in the small magnetic moment is quantifiable.

2.
J Appl Crystallogr ; 54(Pt 4): 1100-1110, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34429721

ABSTRACT

An approach based on the Fisher information (FI) is developed to quantify the maximum information gain and optimal experimental design in neutron reflectometry experiments. In these experiments, the FI can be calculated analytically and used to provide sub-second predictions of parameter uncertainties. This approach can be used to influence real-time decisions about measurement angle, measurement time, contrast choice and other experimental conditions based on parameters of interest. The FI provides a lower bound on parameter estimation uncertainties, and these are shown to decrease with the square root of the measurement time, providing useful information for the planning and scheduling of experimental work. As the FI is computationally inexpensive to calculate, it can be computed repeatedly during the course of an experiment, saving costly beam time by signalling that sufficient data have been obtained or saving experimental data sets by signalling that an experiment needs to continue. The approach's predictions are validated through the introduction of an experiment simulation framework that incorporates instrument-specific incident flux profiles, and through the investigation of measuring the structural properties of a phospholipid bilayer.

3.
Naturwissenschaften ; 108(3): 20, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33914167

ABSTRACT

Many laboratory experiments demonstrate how orb-web spiders change the architecture of their webs in response to prey, surroundings and wind loading. The overall shape of the web and a range of other web parameters are determined by frame and anchor threads. In the wild, unlike the lab, the anchor threads are attached to branches and leaves that are not stationary but move, which affects the thread tension field. Here we experimentally test the effect of a moving support structure on the construction behaviour and web-parameters of the garden cross spider Araneus diadematus. We found no significant differences in building behaviour between rigid and moving anchors in total time spent and total distance covered nor in the percentage of the total time spent and distance covered to build the three major web components: radials, auxiliary and capture spirals. Moreover, measured key parameters of web-geometry were equally unaffected. These results call for re-evaluation of common understanding of spider webs as thread tensions are often considered to be a major factor guiding the spider during construction and web-operation.


Subject(s)
Behavior, Animal/physiology , Environment , Spiders/physiology , Animals
4.
J Exp Biol ; 222(Pt 21)2019 11 06.
Article in English | MEDLINE | ID: mdl-31570511

ABSTRACT

Humans and other animals often use colour to recognise objects regardless of their context - as a measure of material properties rather than of their contrast with a background. Most work on visual communication signals is, however, concerned with colour differences, typically scaled by just noticeable differences (JNDs). Here, we move from the prevailing physiological framework to understand what a given colour or type of colour might tell an animal about an object. To this end, we consider the properties of object colour solids, which represent the colour gamut of reflective materials for a given type of animal eye. The geometry of colour solids reveals general relationships between colours and object properties, which can explain why certain colours are significant to animals, and hence evolve as signals. We define a measure of colour vividness, such that points on the surface are maximally vivid and the 'grey' centre is minimally vivid. We show that a vivid colour for one animal is likely to be vivid for others, and highly vivid colours are less easily mimicked than less vivid colours. Furthermore, vivid colours such as black, white, red and blue, as well as pale colours and certain unsaturated shades, are produced by pure or orderly materials. Such materials are created and maintained against entropic processes. Vivid colours are therefore indicative of ecological affordance or biological function, so it is valuable to have low-level psychological biases towards these colours regardless of any specific significance they might have to the receiver.


Subject(s)
Animal Communication , Color Perception/physiology , Color , Animals , Humans , Models, Biological
5.
J Exp Biol ; 219(Pt 12): 1884-92, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27045090

ABSTRACT

Colour vision and colour signals are important to aquatic animals, but light scattering and absorption by water distorts spectral stimuli. To investigate the performance of colour vision in water, and to suggest how photoreceptor spectral sensitivities and body colours might evolve for visual communication, we model the effects of changes in viewing distance and depth on the appearance of fish colours for three teleosts: a barracuda, Sphyraena helleri, which is dichromatic and two damselfishes, Chromis verater and Chromis hanui, which are trichromatic. We assume that photoreceptors light-adapt to the background, thereby implementing the von Kries transformation, which can largely account for observed colour constancy in humans and other animals, including fish. This transformation does not, however, compensate for light scattering over variable viewing distances, which in less than a metre seriously impairs dichromatic colour vision, and makes judgement of colour saturation unreliable for trichromats. The von Kries transformation does substantially offset colour shifts caused by changing depth, so that from depths of 0 to 30 m modelled colour changes (i.e. failures of colour constancy) are sometimes negligible. However, the magnitudes and directions of remaining changes are complex, depending upon the specific spectral sensitivities of the receptors and the reflectance spectra. This predicts that when judgement of colour is important, the spectra of signalling colours and photoreceptor spectral sensitivities should be evolutionarily linked, with the colours dependent on photoreceptor spectral sensitivities, and vice versa.


Subject(s)
Color Perception , Color Vision , Perciformes/physiology , Photoreceptor Cells, Vertebrate/physiology , Animals , Coral Reefs , Environment , Models, Biological , Species Specificity
6.
PLoS One ; 10(9): e0136884, 2015.
Article in English | MEDLINE | ID: mdl-26353086

ABSTRACT

Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.


Subject(s)
Brassica/physiology , Color , Herbivory/physiology , Plant Leaves/physiology , Animals , Aphids/physiology , Butterflies/physiology , Glucosinolates
7.
Anal Chem ; 78(19): 6833-9, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-17007503

ABSTRACT

The application of evanescent wave cavity ring-down spectroscopy (EW-CRDS) in monitoring electrogenerated species within a thin-layer electrochemical cell is demonstrated. In the proof-of-concept experiments described, ferricyanide, Fe(CN)6(3-), was produced by the transport-limited oxidation of ferrocyanide, Fe(CN)6(4-), in a thin-layer solution cell (25-250 microm) formed between an electrode and the hypotenuse of a fused-silica prism. The prism constituted one element of a high-finesse optical cavity arranged in a triangular ring geometry with light being totally internally reflected at the silica/solution interface. The cavity was pumped with the output (approximately 417 nm) of a single-mode external cavity diode laser, which was continuously scanned across the cavity modes. The presence of electrogenerated ferricyanide within the resulting evanescent field, beyond the optical interface, was detected by the enhanced loss of light trapped within the cavity, as measured by the characteristic cavity ring down. In this way, the EW-CRDS technique is sensitive to absorption in only the first few hundred nanometers of solution above the silica surface. The cavity ring-down response accompanying both cyclic voltammetric and step potential chronoamperometry experiments at a variety of electrode-surface distances is presented, and the results are shown to be well reproduced in modeling by finite element methods. The studies herein thus provide a foundation for further applications of EW-CRDS combined with electrochemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...