Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 20(1): 451-458, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38112329

ABSTRACT

Chorismate mutase (CM) enzymes have long served as model systems for benchmarking new methods and tools in computational chemistry. Despite the enzymes' prominence in the literature, the extent of the roles that activation enthalpy and entropy play in catalyzing the conversion of chorismate to prephenate is still subject to debate. Knowledge of these parameters is a key piece in fully understanding the mechanism of chorismate mutases. Within this study, we utilize EVB/MD free energy perturbation calculations at a range of temperatures, allowing us to extract activation enthalpies and entropies from an Arrhenius plot of activation free energies of the reaction catalyzed by a monofunctional Bacillus subtilis CM and the promiscuous enzyme isochorismate pyruvate lyase of Pseudomonas aeruginosa. In comparison to the uncatalyzed reaction, our results show that both enzyme-catalyzed reactions exhibit a substantial reduction in activation enthalpy, while the effect on activation entropy is relatively minor, demonstrating that enzyme-catalyzed CM reactions are enthalpically driven. Furthermore, we observe that the monofunctional CM from B. subtilis more efficiently catalyzes this reaction than its promiscuous counterpart. This is supported by a structural analysis of the reaction pathway at the transition state, from which we identified key residues explaining the enthalpically driven nature of the reactions and also the difference in efficiencies between the two enzymes.


Subject(s)
Chorismate Mutase , Chorismate Mutase/chemistry , Chorismate Mutase/metabolism , Thermodynamics , Entropy , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...