Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Phys Sci ; 5(6): 101975, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38947182

ABSTRACT

Interstitial fluid (ISF) contains a wealth of biomolecules, yet it is underutilized for diagnostic testing due to a lack of rapid and simple techniques for collecting abundant amounts of fluid. Here, we report a simple and minimally invasive technique for rapidly sampling larger quantities of ISF from human skin. A microneedle array is used to generate micropores in skin from which ISF is extracted using a vacuum-assisted skin patch. Using this technique, an average of 20.8 µL of dermal ISF is collected in 25 min, which is an ∼6-fold improvement over existing sampling methods. Proteomic analysis of collected ISF reveals that it has nearly identical protein composition as blood, and >600 medically relevant biomarkers are identified. Toward this end, we demonstrate the detection of SARS-CoV-2 neutralizing antibodies in ISF collected from COVID-19 vaccinees using two commercial immunoassays, showcasing the utility of this technique for diagnostic testing.

2.
Anal Bioanal Chem ; 415(18): 3983-4002, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36917265

ABSTRACT

The detection and/or quantification of biomarkers in blood is important for the early detection, diagnosis, and treatment of a variety of diseases and medical conditions. Among the different types of sensors for detecting molecular biomarkers, such as proteins, nucleic acids, and small-molecule drugs, affinity-based electrochemical sensors offer the advantages of high analytical sensitivity and specificity, fast detection times, simple operation, and portability. However, biomolecular detection in whole blood is challenging due to its highly complex matrix, necessitating sample purification (i.e., centrifugation), which involves the use of bulky, expensive equipment and tedious sample-handling procedures. To address these challenges, various strategies have been employed, such as purifying the blood sample directly on the sensor, employing micro-/nanoparticles to enhance the detection signal, and coating the electrode surface with blocking agents to reduce nonspecific binding, to improve the analytical performance of affinity-based electrochemical sensors without requiring sample pre-processing steps or laboratory equipment. In this article, we present an overview of affinity-based electrochemical sensor technologies that employ these strategies for biomolecular detection in whole blood.


Subject(s)
Biosensing Techniques , Nanoparticles , Nucleic Acids , Electrochemical Techniques/methods , Electrodes , Biomarkers , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...