Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 16(747): eadl1722, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748773

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Neutralization Tests , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cricetinae , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal
2.
NPJ Vaccines ; 9(1): 85, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762525

ABSTRACT

Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.

3.
Science ; 382(6666): eadj0070, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797027

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Subject(s)
Antigens, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Humans , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , mRNA Vaccines/immunology , Vaccination , Amino Acid Substitution
4.
bioRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37808679

ABSTRACT

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

5.
Nat Commun ; 14(1): 5224, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37633965

ABSTRACT

Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies , Broadly Neutralizing Antibodies , Vaccines, Combined
6.
mBio ; 14(5): e0048823, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37565755

ABSTRACT

IMPORTANCE: A/H7 avian influenza viruses cause outbreaks in poultry globally, resulting in outbreaks with significant socio-economical impact and zoonotic risks. Occasionally, poultry vaccination programs have been implemented to reduce the burden of these viruses, which might result in an increased immune pressure accelerating antigenic evolution. In fact, evidence for antigenic diversification of A/H7 influenza viruses exists, posing challenges to pandemic preparedness and the design of vaccination strategies efficacious against drifted variants. Here, we performed a comprehensive analysis of the global antigenic diversity of A/H7 influenza viruses and identified the main substitutions in the hemagglutinin responsible for antigenic evolution in A/H7N9 viruses isolated between 2013 and 2019. The A/H7 antigenic map and knowledge of the molecular determinants of their antigenic evolution add value to A/H7 influenza virus surveillance programs, the design of vaccines and vaccination strategies, and pandemic preparedness.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza A Virus, H7N9 Subtype/genetics , Hemagglutinins , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antigenic Variation , Disease Outbreaks , Poultry , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control
7.
bioRxiv ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-35860221

ABSTRACT

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.

8.
Nat Commun ; 13(1): 7701, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513653

ABSTRACT

Several studies have shown that SARS-CoV-2 BA.1 omicron is an immune escape variant. Meanwhile, however, omicron BA.2 and BA.5 became dominant in many countries and replaced BA.1. As both have several mutations compared to BA.1, we analyzed whether BA.2 and BA.5 show further immune escape relative to BA.1. Here, we characterized neutralization profiles against the BA.2 and BA.5 omicron sub-variants in plasma samples from individuals with different history of exposures to infection/vaccination and found that unvaccinated individuals after a single exposure to BA.2 had limited cross-neutralizing antibodies to pre-omicron variants and to BA.1. Consequently, our antigenic map including all Variants of Concern and BA.1, BA.2 and BA.5 omicron sub-variants, showed that all omicron sub-variants are distinct to pre-omicron variants, but that the three omicron variants are also antigenically distinct from each other. The antibody landscapes illustrate that cross-neutralizing antibodies against the current antigenic space, as described in our maps, are generated only after three or more exposures to antigenically close variants but also after two exposures to antigenically distant variants. Here, we describe the antigenic space inhabited by the relevant SARS-CoV-2 variants, the understanding of which will have important implications for further vaccine strain adaptations.


Subject(s)
COVID-19 , Humans , Broadly Neutralizing Antibodies , SARS-CoV-2/genetics , Acclimatization , Antibodies, Viral , Antibodies, Neutralizing
9.
Sci Transl Med ; 14(630): eabm3302, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-34846168

ABSTRACT

Although mRNA vaccines encoding the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevent COVID-19, the emergence of new viral variants jeopardizes their efficacy. Here, we assessed the immunogenicity and protective activity of historical (mRNA-1273, designed for Wuhan-1 spike protein) or modified (mRNA-1273.351, designed for B.1.351 spike protein) Moderna mRNA vaccines in 129S2 and K18-hACE2 mice. Mice were immunized with either high-dose or low-dose formulations of the mRNA vaccines, where low-dose vaccination modeled suboptimal immune responses. Immunization with formulations at either dose induced neutralizing antibodies in serum against ancestral SARS-CoV-2 WA1/2020 and several virus variants, although serum titers were lower against the B.1.617.2 (Delta) virus. Protection against weight loss and lung pathology was observed with all high-dose vaccines against all viruses. However, low-dose formulations of the vaccines, which produced lower magnitude antibody and T cell responses, showed breakthrough lung infections with B.1.617.2 and development of pneumonia in K18-hACE2 mice. Thus, in individuals with reduced immunity after mRNA vaccination, breakthrough infection and disease may occur with some SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Mice , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , mRNA Vaccines
10.
bioRxiv ; 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34462745

ABSTRACT

Although mRNA vaccines prevent COVID-19, variants jeopardize their efficacy as immunity wanes. Here, we assessed the immunogenicity and protective activity of historical (mRNA-1273, designed for Wuhan-1 spike) or modified (mRNA-1273.351, designed for B.1.351 spike) preclinical Moderna mRNA vaccines in 129S2 and K18-hACE2 mice. Immunization with high or low dose formulations of mRNA vaccines induced neutralizing antibodies in serum against ancestral SARS-CoV-2 and several variants, although levels were lower particularly against the B.1.617.2 (Delta) virus. Protection against weight loss and lung pathology was observed with all high-dose vaccines against all viruses. Nonetheless, low-dose formulations of the vaccines, which produced lower magnitude antibody and T cell responses, and serve as a possible model for waning immunity, showed breakthrough lung infection and pneumonia with B.1.617.2. Thus, as levels of immunity induced by mRNA vaccines decline, breakthrough infection and disease likely will occur with some SARS-CoV-2 variants, suggesting a need for additional booster regimens.

11.
Vaccine ; 34(33): 3780-6, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27342914

ABSTRACT

Influenza vaccines are usually non-adjuvanted but addition of adjuvant may improve immunogenicity and permit dose-sparing, critical for vaccine supply in the event of an influenza pandemic. The aim of this first-in-man study was to determine the effect of delta inulin adjuvant on the safety and immunogenicity of a reduced dose seasonal influenza vaccine. Healthy male and female adults aged 18-65years were recruited to participate in a randomized controlled study to compare the safety, tolerability and immunogenicity of a reduced-dose 2007 Southern Hemisphere trivalent inactivated influenza vaccine formulated with Advax™ delta inulin adjuvant (LTIV+Adj) when compared to a full-dose of the standard TIV vaccine which does not contain an adjuvant. LTIV+Adj provided equivalent immunogenicity to standard TIV vaccine as assessed by hemagglutination inhibition (HI) assays against each vaccine strain as well as against a number of heterosubtypic strains. HI responses were sustained at 3months post-immunisation in both groups. Antibody landscapes against a large panel of H3N2 influenza viruses showed distinct age effects whereby subjects over 40years old had a bimodal baseline HI distribution pattern, with the highest HI titers against the very oldest H3N2 isolates and with a second HI peak against influenza isolates from the last 5-10years. By contrast, subjects >40years had a unimodal baseline HI distribution with peak recognition of H3N2 isolates from approximately 20years ago. The reduced dose TIV vaccine containing Advax adjuvant was well tolerated and no safety issues were identified. Hence, delta inulin may be a useful adjuvant for use in seasonal or pandemic influenza vaccines. Australia New Zealand Clinical Trial Registry: ACTRN12607000599471.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Inulin/analogs & derivatives , Adult , Antibodies, Viral/blood , Female , Hemagglutination Inhibition Tests , Humans , Influenza A Virus, H3N2 Subtype , Inulin/administration & dosage , Male , Middle Aged , Single-Blind Method , Vaccines, Inactivated/therapeutic use
12.
J Infect Dis ; 213(1): 31-8, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26142433

ABSTRACT

BACKGROUND: Antigenic characterization of influenza viruses is typically based on hemagglutination inhibition (HI) assay data for viral isolates tested against strain-specific postinfection ferret antisera. Here, similar virus characterizations were performed using serological data from humans with primary influenza A(H3N2) infection. METHODS: We screened sera collected between 1995 and 2011 from children between 9 and 24 months of age for influenza virus antibodies, performed HI tests for the positive sera against 23 influenza viruses isolated between 1989 and 2011, and measured HI titers of antisera against influenza A(H3N2) from 24 ferrets against the same panel of viruses. RESULTS: Of the 17 positive human sera, 6 had a high response, showing HI patterns that would be expected from primary infection antisera, while 11 sera had lower, more dispersed patterns of reactivity that are not easily explained. The antigenic map based on the high-response human HI data was similar to the map created using ferret data. CONCLUSIONS: Although the overall structure of the ferret and human antigenic maps is similar, local differences in virus positions indicate that the human and ferret immune system might see antigenic properties of viruses differently. Further studies are needed to establish the degree of similarity between serological patterns in ferret and human data.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/immunology , Animals , Antibodies, Viral/blood , Disease Models, Animal , Ferrets , Hemagglutination Inhibition Tests , Humans , Infant , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...