Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Ecotoxicology ; 33(2): 131-141, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38381206

ABSTRACT

Terrestrial soils in forested landscapes represent some of the largest mercury (Hg) reserves globally. Wildfire can alter the storage and distribution of terrestrial-bound Hg via reemission to the atmosphere or mobilization in watersheds where it may become available for methylation and uptake into food webs. Using data associated with the 2007 Moonlight and Antelope Fires in California, we examined the long-term direct effects of wildfire burn severity on the distribution and magnitude of Hg concentrations in riparian food webs. Additionally, we quantified the cross-ecosystem transfer of Hg from aquatic invertebrate to riparian bird communities; and assessed the influence of biogeochemical, landscape variables, and ecological factors on Hg concentrations in aquatic and terrestrial food webs. Benthic macroinvertebrate methylmercury (MeHg) and riparian bird blood total mercury (THg) concentrations varied by 710- and 760-fold, respectively, and Hg concentrations were highest in predators. We found inconsistent relationships between Hg concentrations across and within taxa and guilds in response to stream chemical parameters and burn severity. Macroinvertebrate scraper MeHg concentrations were influenced by dissolved organic carbon (DOC); however, that relationship was moderated by burn severity (as burn severity increased the effect of DOC declined). Omnivorous bird Hg concentrations declined with increasing burn severity. Overall, taxa more linked to in situ energetic pathways may be more responsive to the biogeochemical processes that influence MeHg cycling. Remarkably, 8 years post-fire, we still observed evidence of burn severity influencing Hg concentrations within riparian food webs, illustrating its overarching role in altering the storage and redistribution of Hg and influencing biogeochemical processes.


Subject(s)
Burns , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Wildfires , Animals , Ecosystem , Rivers , Water Pollutants, Chemical/analysis , Invertebrates/metabolism , Mercury/analysis , Methylmercury Compounds/metabolism , Food Chain , Birds/metabolism , Environmental Monitoring
2.
Environ Sci Technol ; 57(50): 21313-21326, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38051342

ABSTRACT

Impoundment is among the most common hydrologic alterations with impacts on aquatic ecosystems that can include effects on mercury (Hg) cycling. However, landscape-scale differences in Hg bioaccumulation between reservoirs and other habitats are not well characterized nor are the processes driving these differences. We examined total Hg (THg) concentrations of Smallmouth Bass (Micropterus dolomieu) collected from reservoir, tailrace, and free-flowing reaches along an 863 km segment of the Snake River, USA, a semiarid river with 22 impoundments along its course. Across three size-classes (putative 1-year-old, first reproductive, and harvestable sized fish), THg concentrations in reservoirs and tailraces averaged 76% higher than those in free-flowing segments. Among reservoirs, THg concentrations were highest in reservoirs with inconsistent stratification patterns, 47% higher than annually stratified, and 144% higher than unstratified reservoirs. Fish THg concentrations in tailraces immediately downstream of stratified reservoirs were higher than those below unstratified (38-130%) or inconsistently stratified (32-79%) reservoirs. Stratification regimes influenced the exceedance of fish and human health benchmarks, with 52-80% of fish from stratifying reservoirs and downstream tailraces exceeding a human consumption benchmark, compared to 6-17% where stratification did not occur. These findings suggest that impoundment and stratification play important roles in determining the patterns of Hg exposure risk across the landscape.


Subject(s)
Bass , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Humans , Infant , Mercury/analysis , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis , Fishes
3.
Environ Pollut ; 329: 121688, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37088253

ABSTRACT

Total mercury (THg) was measured in muscle (fillet) and liver tissue of adult smallmouth bass Micropterus dolomieu collected at multiple sites in the Potomac and Susquehanna River drainages within the Chesapeake Bay watershed. Smallmouth bass in these drainages have experienced episodic mortality events, a high prevalence of skin lesions and reproductive endocrine disruption (intersex or testicular oocytes and plasma vitellogenin in males). A multi-level assessment of general and reproductive health including indicators at the organismal, organ, cellular and molecular levels was conducted on adult smallmouth bass during the spring (prespawn) season. Concentrations of THg were correlated with increased visible abnormalities, increased macrophage aggregates and tissue parasite burdens. In male bass positive correlations of THg were observed with plasma vitellogenin and hepatic transcript abundance of estrogen receptor ß1 and androgen receptor α, while there was a negative association with estrogen receptors α and ß2 and androgen receptors ß. In female bass there was a negative correlation between THg and plasma vitellogenin as well as hepatic transcript abundance of vitellogenin, choriogenin, estrogen receptor ß2 and 17ß hydroxysteroid dehydrogenase. Associations of THg concentrations with various biological indicators suggest mercury may be an important environmental stressor contributing to the observed adverse effects in smallmouth bass populations.


Subject(s)
Bass , Mercury , Water Pollutants, Chemical , Animals , Male , Female , Bass/physiology , Mercury/toxicity , Receptors, Estrogen , Vitellogenins , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Rivers
4.
Sci Total Environ ; 867: 161469, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36632899

ABSTRACT

Mercury (Hg) exposure to fish, wildlife, and humans is widespread and of global concern, thus stimulating efforts to reduce emissions. Because the relationships between rates of inorganic Hg loading, methylmercury (MeHg) production, and bioaccumulation are extremely complex and challenging to predict, there is a need for reliable biosentinels to understand the distribution of Hg in the environment and monitor the effectiveness of reduction efforts. However, it is important to assess how temporal and spatial variation at multiple scales influences the efficacy of specific biosentinels. Seasonal and interannual variation in total Hg (THg) concentrations of dragonfly larvae were examined in relation to spatial variability among 21 sites in two U.S. national parks with contrasting ecologies and Hg deposition patterns. Dragonfly THg differed among sampling events at 17 of the 21 sites, but by an average of only 20.4 % across events, compared to an average difference of 52.7 % among sites. Further, THg concentrations did not follow consistent seasonal patterns across sites or years, suggesting that the observed temporal variation was unlikely to bias monitoring efforts. Importantly, for a specific site, there was no difference in % MeHg in dragonflies among sampling events. Finally, there was significant temporal variability in the biogeochemical factors (aqueous inorganic Hg, aqueous MeHg, DOC, SO4, and pH) influencing dragonfly THg, with the importance of individual factors varying by 2.4 to 4.3-fold across sampling events. Despite these results, it is noteworthy that the observed temporal variation in dragonfly THg concentrations was neither large nor consistent enough to bias spatial assessments. Thus, although this temporal variation may provide insights into the processes influencing biological Hg concentrations, it is unlikely to impair the use of dragonflies as biosentinels for monitoring spatial or temporal patterns at scales relevant to most mitigation efforts.


Subject(s)
Mercury , Methylmercury Compounds , Odonata , Water Pollutants, Chemical , Animals , Humans , Mercury/analysis , Larva , Food Chain , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 56(19): 13751-13760, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36107858

ABSTRACT

Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake of MeHg and the relative importance of MeHg export in water versus biological compartments remain poorly understood. We examined the relations between the reservoir stratification state, anoxia, and the concentrations and export loads of MeHg in aqueous and biological compartments at the outflow locations of two reservoirs of the Hells Canyon Complex (Snake River, Idaho-Oregon). Results show that (1) MeHg concentrations in filter-passing water, zooplankton, suspended particles, and detritus increased in response to reservoir destratification; (2) zooplankton MeHg strongly correlated with MeHg in filter-passing water during destratification; (3) reservoir anoxia appeared to be a key control on MeHg export; and (4) biological MeHg, primarily in zooplankton, accounted for only 5% of total MeHg export from the reservoirs (the remainder being aqueous compartments). These results improve our understanding of the role of biological incorporation of MeHg and the subsequent downstream release from seasonally stratified reservoirs and demonstrate that in-reservoir physical processes strongly influence MeHg incorporation at the base of the aquatic food web.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Environmental Monitoring , Food Chain , Humans , Hypoxia , Mercury/analysis , Methylmercury Compounds/metabolism , Oxygen , Rivers , Water , Water Pollutants, Chemical/analysis
6.
Environ Sci Technol ; 55(18): 12272-12280, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34473489

ABSTRACT

Lead (Pb) exposure is a widespread wildlife conservation threat. Although commonly associated with Pb-based ammunition from big-game hunting, small mammals (e.g., ground squirrels) shot for recreational or pest-management purposes represent a potentially important Pb vector in agricultural regions. We measured the responses of avian scavengers to pest-shooting events and examined their Pb exposure through consumption of shot mammals. There were 3.4-fold more avian scavengers at shooting fields relative to those at fields with no recent shooting, and avian scavengers spent 1.8-fold more time feeding after recent shooting events. We isotopically labeled shot ground squirrels in the field with an enriched 15N isotope tracer; 6% of avian scavengers sampled within a 39 km radius reflected this tracer in their blood. However, 33% of the avian scavengers within the average foraging dispersal distance of nests (0.6-3.7 km) were labeled, demonstrating the importance of these shooting fields as a source of food for birds nesting in close proximity. Additionally, Pb concentrations in 48% of avian scavengers exceeded subclinical poisoning benchmarks for sensitive species (0.03-0.20 µg/g w/w), and those birds exhibited reduced δ-aminolevulinic acid dehydratase activity, indicating a biochemical effect of Pb. The use of shooting to manage small mammal pests is a common practice globally. Efforts that can reduce the use of Pb-based ammunition may lessen the negative physiological effects of Pb exposure on avian scavengers.


Subject(s)
Lead Poisoning , Lead , Animals , Birds , Fishes , Mammals
8.
Environ Sci Technol ; 54(14): 8779-8790, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32633494

ABSTRACT

We conducted a national-scale assessment of mercury (Hg) bioaccumulation in aquatic ecosystems, using dragonfly larvae as biosentinels, by developing a citizen-science network to facilitate biological sampling. Implementing a carefully designed sampling methodology for citizen scientists, we developed an effective framework for a landscape-level inquiry that might otherwise be resource limited. We assessed the variation in dragonfly Hg concentrations across >450 sites spanning 100 United States National Park Service units and examined intrinsic and extrinsic factors associated with the variation in Hg concentrations. Mercury concentrations ranged between 10.4 and 1411 ng/g dry weight across sites and varied among habitat types. Dragonfly total Hg (THg) concentrations were up to 1.8-fold higher in lotic habitats than in lentic habitats and 37% higher in waterbodies with abundant wetlands along their margins than those without wetlands. Mercury concentrations in dragonflies differed among families but were correlated (r2 > 0.80) with each other, enabling adjustment to a consistent family to facilitate spatial comparisons among sampling units. Dragonfly THg concentrations were positively correlated with THg concentrations in both fish and amphibians from the same locations, indicating that dragonfly larvae are effective indicators of Hg bioavailability in aquatic food webs. We used these relationships to develop an integrated impairment index of Hg risk to aquatic ecosytems and found that 12% of site-years exceeded high or severe benchmarks of fish, wildlife, or human health risk. Collectively, this continental-scale study demonstrates the utility of dragonfly larvae for estimating the potential mercury risk to fish and wildlife in aquatic ecosystems and provides a framework for engaging citizen science as a component of landscape Hg monitoring programs.


Subject(s)
Mercury , Odonata , Water Pollutants, Chemical , Animals , Bioaccumulation , Ecosystem , Environmental Monitoring , Fishes , Food Chain , Larva , Mercury/analysis , Parks, Recreational , United States , Water Pollutants, Chemical/analysis
9.
Ecotoxicology ; 29(4): 459-484, 2020 May.
Article in English | MEDLINE | ID: mdl-32239332

ABSTRACT

Chemical contaminants are a threat to the Chesapeake Bay watershed, with mercury (Hg) among the most prevalent causes of impairment. Despite this, large-scale patterns of Hg concentrations, and the potential risks to fish, wildlife, and humans across the watershed, are poorly understood. We compiled fish Hg data from state monitoring programs and recent research efforts to address this knowledge gap and provide a comprehensive assessment of fish Hg concentrations in the watershed's freshwater habitats. The resulting dataset consisted of nearly 8000 total Hg (THg) concentrations from 600 locations. Across the watershed, fish THg concentrations spanned a 44-fold range, with mean concentrations varying by 2.6- and 8.8-fold among major sub-watersheds and individual 8-digit hydrological units, respectively. Although, mean THg concentrations tended to be moderate, fish frequently exceeded benchmarks for potential adverse health effects, with 45, 48, and 36% of all samples exceeding benchmarks for human, avian piscivore, and fish risk, respectively. Importantly, the percentage of fish exceeding these benchmarks was not uniform among species or locations. The variation in fish THg concentrations among species and sites highlights the roles of waterbody, landscape, and ecological processes in shaping broad patterns in Hg risk across the watershed. We outline an integrated Hg monitoring program that could identify key factors influencing Hg concentrations across the watershed and facilitate the implementation of management strategies to mitigate the risks posed by Hg.


Subject(s)
Environmental Monitoring , Fishes/metabolism , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bays , Ecosystem , Methylmercury Compounds
10.
PLoS One ; 15(1): e0226824, 2020.
Article in English | MEDLINE | ID: mdl-31929573

ABSTRACT

Mercury (Hg) and selenium (Se) are contaminants of concern for fish in the Upper Colorado River Basin (UCRB). We explored Hg and Se in fish tissues (2,324 individuals) collected over 50 years (1962-2011) from the UCRB. Samples include native and non-native fish collected from lotic waterbodies spanning 7 major tributaries to the Colorado River. There was little variation of total mercury (THg) in fish assemblages basin-wide and only 13% (272/1959) of individual fish samples exceeded the fish health benchmark (0.27 µg THg/g ww). Most THg exceedances were observed in the White-Yampa tributary whereas the San Juan had the lowest mean THg concentration. Risks associated with THg are species specific with exceedances dominated by Colorado Pikeminnow (mean = 0.38 and standard error ± 0.08 µg THg/g ww) and Roundtail Chub (0.24 ± 0.06 µg THg/g ww). For Se, 48% (827/1720) of all individuals exceeded the fish health benchmark (5.1 µg Se/g dw). The Gunnison river had the most individual exceedances of the Se benchmark (74%) whereas the Dirty Devil had the fewest. We identified that species of management concern accumulate THg and Se to levels above risk thresholds and that fishes of the White-Yampa (THg) and Gunnison (Se) rivers are at the greatest risk in the UCRB.


Subject(s)
Fishes , Mercury/analysis , Selenium/analysis , Animals , Environmental Monitoring , Fishes/classification , Linear Models , Molar/chemistry , Retrospective Studies , Rivers/chemistry , Southwestern United States , Tissue Distribution
11.
Environ Pollut ; 253: 636-645, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330355

ABSTRACT

Timber harvest has many effects on aquatic ecosystems, including changes in hydrological, biogeochemical, and ecological processes that can influence mercury (Hg) cycling. Although timber harvest's influence on aqueous Hg transformation and transport are well studied, the effects on Hg bioaccumulation are not. We evaluated Hg bioaccumulation, biomagnification, and food web structure in 10 paired catchments that were either clear-cut in their entirety, clear-cut except for an 8-m wide riparian buffer, or left unharvested. Average mercury concentrations in aquatic biota from clear-cut catchments were 50% higher than in reference catchments and 165% higher than in catchments with a riparian buffer. Mercury concentrations in aquatic invertebrates and salamanders were not correlated with aqueous THg or MeHg concentrations, but rather treatment effects appeared to correspond with differences in the utilization of terrestrial and aquatic basal resources in the stream food webs. Carbon and nitrogen isotope data suggest that a diminished shredder niche in the clear-cut catchments contributed to lower basal resource diversity compared with the reference of buffered treatments, and that elevated Hg concentrations in the clear-cut catchments reflect an increased reliance on aquatic resources in clear-cut catchments. In contrast, catchments with riparian buffers had higher basal resource diversity than the reference catchments, indicative of more balanced utilization of terrestrial and aquatic resources. Further, following timber harvest THg concentrations in riparian songbirds were elevated, suggesting an influence of timber harvest on Hg export to riparian food webs. These data, coupled with comparisons of individual feeding guilds, indicate that changes in organic matter sources and associated effects on stream food web structure are important mechanisms by which timber harvest modifies Hg bioaccumulation in headwater streams and riparian consumers.


Subject(s)
Food Chain , Forestry/methods , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Animals , Biota , Carbon , Ecosystem , Invertebrates , Mercury/analysis , Methylmercury Compounds , Nitrogen Isotopes , Rivers/chemistry , Water Pollutants, Chemical/analysis
12.
Environ Sci Technol ; 51(4): 2131-2139, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28088848

ABSTRACT

Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ34S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ34S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ13C and δ15N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.


Subject(s)
Mercury , Sulfur , Animals , Environmental Monitoring , Fishes , Food Chain , Sulfur Isotopes , Water Pollutants, Chemical
13.
Sci Total Environ ; 568: 1213-1226, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27320732

ABSTRACT

Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.


Subject(s)
Environmental Pollutants/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Vertebrates/metabolism , Animals , Canada , Environmental Monitoring , Environmental Pollutants/analysis , Fishes/metabolism , Mercury/analysis , Methylmercury Compounds/analysis , Mexico , United States
14.
Sci Total Environ ; 571: 342-54, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27161906

ABSTRACT

Fish represent high quality protein and nutrient sources, but Hg contamination is ubiquitous in aquatic ecosystems and can pose health risks to fish and their consumers. Potential health risks posed to fish and humans by Hg contamination in fish were assessed in western Canada and the United States. A large compilation of inland fish Hg concentrations was evaluated in terms of potential health risk to the fish themselves, health risk to predatory fish that consume Hg contaminated fish, and to humans that consume Hg contaminated fish. The probability that a fish collected from a given location would exceed a Hg concentration benchmark relevant to a health risk was calculated. These exceedance probabilities and their associated uncertainties were characterized for fish of multiple size classes at multiple health-relevant benchmarks. The approach was novel and allowed for the assessment of the potential for deleterious health effects in fish and humans associated with Hg contamination in fish across this broad study area. Exceedance probabilities were relatively common at low Hg concentration benchmarks, particularly for fish in larger size classes. Specifically, median exceedances for the largest size classes of fish evaluated at the lowest Hg concentration benchmarks were 0.73 (potential health risks to fish themselves), 0.90 (potential health risk to predatory fish that consume Hg contaminated fish), and 0.97 (potential for restricted fish consumption by humans), but diminished to essentially zero at the highest benchmarks and smallest fish size classes. Exceedances of benchmarks are likely to have deleterious health effects on fish and limit recommended amounts of fish humans consume in western Canada and the United States. Results presented here are not intended to subvert or replace local fish Hg data or consumption advice, but provide a basis for identifying areas of potential health risk and developing more focused future research and monitoring efforts.


Subject(s)
Environmental Monitoring/methods , Fishes/metabolism , Food Contamination/analysis , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Canada , Female , Humans , Male , Risk Assessment/methods , United States
15.
Sci Total Environ ; 568: 739-748, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27039275

ABSTRACT

Anthropogenic manipulation of aquatic habitats can profoundly alter mercury (Hg) cycling and bioaccumulation. The impoundment of fluvial systems is among the most common habitat manipulations and is known to increase fish Hg concentrations immediately following impoundment. However, it is not well understood how Hg concentrations differ between reservoirs and lakes at large spatial and temporal scales or how reservoir management influences fish Hg concentrations. This study evaluated total Hg (THg) concentrations in 64,386 fish from 883 reservoirs and 1387 lakes, across the western United States and Canada, to assess differences between reservoirs and lakes, as well as the influence of reservoir management on fish THg concentrations. Fish THg concentrations were 1.4-fold higher in reservoirs (0.13±0.011µg/g wet weight±standard error) than lakes (0.09±0.006), though this difference varied among ecoregions. Fish THg concentrations were 1.5- to 2.6-fold higher in reservoirs than lakes of the North American Deserts, Northern Forests, and Mediterranean California ecoregions, but did not differ between reservoirs and lakes in four other ecoregions. Fish THg concentrations peaked in three-year-old reservoirs then rapidly declined in 4-12year old reservoirs. Water management was particularly important in influencing fish THg concentrations, which were up to 11-times higher in reservoirs with minimum water storage occurring in May, June, or July compared to reservoirs with minimum storage occurring in other months. Between-year changes in maximum water storage strongly influenced fish THg concentrations, but within-year fluctuations in water levels did not influence fish THg concentrations. Specifically, fish THg concentrations increased up to 3.2-fold over the range of between-year changes in maximum water storage in all ecoregions except Mediterranean California. These data highlight the role of reservoir creation and management in influencing fish THg concentrations and suggest that water management may provide an effective means of mitigating Hg bioaccumulation in some reservoirs.


Subject(s)
Conservation of Water Resources/methods , Environmental Monitoring/methods , Fishes/growth & development , Lakes/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Canada , Midwestern United States , Models, Theoretical , Northwestern United States , Seasons , Southwestern United States
16.
Sci Total Environ ; 568: 1171-1184, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27102274

ABSTRACT

Methylmercury contamination of fish is a global threat to environmental health. Mercury (Hg) monitoring programs are valuable for generating data that can be compiled for spatially broad syntheses to identify emergent ecosystem properties that influence fish Hg bioaccumulation. Fish total Hg (THg) concentrations were evaluated across the Western United States (US) and Canada, a region defined by extreme gradients in habitat structure and water management. A database was compiled with THg concentrations in 96,310 fish that comprised 206 species from 4262 locations, and used to evaluate the spatial distribution of fish THg across the region and effects of species, foraging guilds, habitats, and ecoregions. Areas of elevated THg exposure were identified by developing a relativized estimate of fish mercury concentrations at a watershed scale that accounted for the variability associated with fish species, fish size, and site effects. THg concentrations in fish muscle ranged between 0.001 and 28.4 (µg/g wet weight (ww)) with a geometric mean of 0.17. Overall, 30% of individual fish samples and 17% of means by location exceeded the 0.30µg/g ww US EPA fish tissue criterion. Fish THg concentrations differed among habitat types, with riverine habitats consistently higher than lacustrine habitats. Importantly, fish THg concentrations were not correlated with sediment THg concentrations at a watershed scale, but were weakly correlated with sediment MeHg concentrations, suggesting that factors influencing MeHg production may be more important than inorganic Hg loading for determining fish MeHg exposure. There was large heterogeneity in fish THg concentrations across the landscape; THg concentrations were generally higher in semi-arid and arid regions such as the Great Basin and Desert Southwest, than in temperate forests. Results suggest that fish mercury exposure is widespread throughout Western US and Canada, and that species, habitat type, and region play an important role in influencing ecological risk of mercury in aquatic ecosystems.


Subject(s)
Environmental Exposure , Fishes/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Animals , Canada , Ecosystem , Environmental Monitoring , Fresh Water , United States
17.
Sci Total Environ ; 568: 685-696, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-26996522

ABSTRACT

The widespread distribution of mercury (Hg) threatens wildlife health, particularly piscivorous birds. Western North America is a diverse region that provides critical habitat to many piscivorous bird species, and also has a well-documented history of mercury contamination from legacy mining and atmospheric deposition. The diversity of landscapes in the west limits the distribution of avian piscivore species, complicating broad comparisons across the region. Mercury risk to avian piscivores was evaluated across the western United States and Canada using a suite of avian piscivore species representing a variety of foraging strategies that together occur broadly across the region. Prey fish Hg concentrations were size-adjusted to the preferred size class of the diet for each avian piscivore (Bald Eagle=36cm, Osprey=30cm, Common and Yellow-billed Loon=15cm, Western and Clark's Grebe=6cm, and Belted Kingfisher=5cm) across each species breeding range. Using a combination of field and lab-based studies on Hg effect in a variety of species, wet weight blood estimates were grouped into five relative risk categories including: background (<0.5µg/g), low (0.5-1µg/g), moderate (1-2µg/g), high (2-3µg/g), and extra high (>3µg/g). These risk categories were used to estimate potential mercury risk to avian piscivores across the west at a 1degree-by-1degree grid cell resolution. Avian piscivores foraging on larger-sized fish generally were at a higher relative risk to Hg. Habitats with a relatively high risk included wetland complexes (e.g., prairie pothole in Saskatchewan), river deltas (e.g., San Francisco Bay, Puget Sound, Columbia River), and arid lands (Great Basin and central Arizona). These results indicate that more intensive avian piscivore sampling is needed across Western North America to generate a more robust assessment of exposure risk.


Subject(s)
Birds/blood , Environmental Exposure/analysis , Fishes/blood , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Birds/growth & development , Canada , Databases, Factual , Environmental Exposure/prevention & control , Environmental Monitoring , Fishes/growth & development , Food Chain , Liver/chemistry , Mercury/blood , Northwestern United States , Ovum/chemistry , Risk Assessment , Water Pollutants, Chemical/blood
18.
Ecotoxicology ; 25(3): 574-83, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826095

ABSTRACT

Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0-2 cm segment performed the best across all salamander species, explaining between 82 and 92% of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79% of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.


Subject(s)
Amphibians/physiology , Environmental Monitoring/methods , Mercury/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environmental Monitoring/standards
19.
Environ Toxicol Chem ; 33(11): 2639-45, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25143076

ABSTRACT

Invasive species are important drivers of environmental change in aquatic ecosystems and can alter habitat characteristics, community composition, and ecosystem energetics. Such changes have important implications for many ecosystem processes, including the bioaccumulation and biomagnification of contaminants through food webs. Mercury concentrations were measured in 2 nonnative and 1 native crayfish species from western Oregon (USA). Nonnative red swamp crayfish had mercury concentrations similar to those in native signal crayfish (0.29 ± 0.05 µg/g dry wt and 0.36 ± 0.06 µg/g dry wt, respectively), whereas the nonnative ringed crayfish had lower mercury concentrations (0.10 ± 0.02 µg/g dry wt) than either of the other species. The mean energy content of muscle was similar between the native signal crayfish and nonnative ringed crayfish but was significantly higher in the nonnative red swamp crayfish. Across species, mercury concentrations were negatively correlated with energy density. Such energetic differences could exacerbate changes in mercury transfer through trophic pathways of food webs, especially via alterations to the growth dynamics of consumers. Thus, it is important to consider the role of energy content in determining effective mercury exposure even when mercury concentrations on a per-unit mass basis do not differ between species. Environ Toxicol Chem 2014;33:2639-2645. Published 2014 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the United States of America.


Subject(s)
Astacoidea/drug effects , Food Chain , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Astacoidea/metabolism , Ecosystem , Female , Fresh Water , Geography , Introduced Species , Male , Northwestern United States , Oregon , United States
20.
Environ Toxicol Chem ; 32(7): 1623-30, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23456641

ABSTRACT

Mercury (Hg) is a widespread environmental contaminant known for the neurotoxicity of its methylated forms, especially monomethylmercury, which bioaccumulates and biomagnifies in aquatic food webs. Mercury bioaccumulation and biomagnification rates are known to vary among species utilizing different food webs (benthic vs limnetic) within and between systems. The authors assessed whether carbon and nitrogen stable isotope values and total Hg (THg) concentrations differed between sympatric benthic and limnetic ecotypes and sexes of threespine stickleback fish (Gasterosteus aculeatus) from Benka Lake, Alaska, USA. The mean THg concentration in the limnetic ecotype was significantly higher (difference between benthic and limnetic means equals 26 mg/kg dry wt or 16.1%) than that of the benthic ecotype. Trophic position and benthic carbon percentage utilized were both important determinants of THg concentration; however, the 2 variables were of approximately equal importance in females, whereas trophic position clearly explained more of the variance than benthic carbon percentage in males. Additionally, strong sex effects (mean difference between females and males equals 45 mg/kg dry wt or 29.4%) were observed in both ecotypes, with female fish having lower THg concentrations than males. These results indicate that trophic ecology and sex are both important determinants of Hg contamination even within a single species and lake and likely play a role in governing Hg concentrations in higher trophic levels.


Subject(s)
Ecotype , Mercury/metabolism , Smegmamorpha/metabolism , Water Pollutants, Chemical/metabolism , Alaska , Animals , Ecosystem , Feeding Behavior , Female , Food Chain , Lakes/chemistry , Male , Mercury/analysis , Sex Factors , Sympatry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...