Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 289(3): 542-9, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26454031

ABSTRACT

Inhalation of butter flavoring by workers in the microwave popcorn industry may result in "popcorn workers' lung." In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro.


Subject(s)
Bronchi/drug effects , Diacetyl/adverse effects , Epithelial Cells/drug effects , Flavoring Agents/adverse effects , Ion Transport/drug effects , Pentanones/adverse effects , Butter , Cells, Cultured , Humans , Inhalation Exposure/adverse effects , Methacholine Chloride/adverse effects , Microwaves , Occupational Exposure/adverse effects
2.
Am J Pathol ; 181(3): 829-44, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22894831

ABSTRACT

Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the α-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another α-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain.


Subject(s)
Olfactory Bulb/pathology , Pentanones/administration & dosage , Pentanones/toxicity , Respiratory System/pathology , Administration, Inhalation , Animals , Cadherins/metabolism , Caspase 3/metabolism , Cell Death/drug effects , Diacetyl/toxicity , Epithelium/drug effects , Epithelium/pathology , Fluorescent Antibody Technique , Gene Expression Regulation/drug effects , Male , Neurons/drug effects , Neurons/pathology , Olfactory Bulb/drug effects , Olfactory Marker Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Staining and Labeling , Sugar Alcohol Dehydrogenases/metabolism , Time Factors
3.
J Toxicol Environ Health A ; 66(15): 1441-52, 2003 Aug 08.
Article in English | MEDLINE | ID: mdl-12857634

ABSTRACT

Recent studies have demonstrated that the mouse lung can be exposed to soluble antigens by aspiration of these antigens from the pharynx. This simple technique avoids the trauma associated with intratracheal instillation. In this study, the pharyngeal aspiration technique was validated for exposing the mouse lung to respirable particles. Using respirable fluorescent amine-modified polystyrene latex beads and beryllium oxide particles, we investigated the localization of aspirated particles within the lung and the relationship between the amount of material placed in the pharynx and the amount deposited in the lung. For exposure, mice were anesthetized with isoflurane in a bell jar, placed on a slant board, and the tongue was gently held in full extension while a 50-microl suspension of particles was pipetted onto the base of the tongue. Tongue restraint was maintained until at least two breaths were completed. Less than a minute after exposure, all mice awoke from anesthesia without visible sequela. There were no significant differences in particle distribution between the left and right side of the lung (p=.16). Particles were widely disseminated in a peribronchiolar pattern within the alveolar region. There was a linear and significant correlation (r2=.99) between the amount administered and the amount deposited in the lung. In beryllium-exposed mice, measurable lung beryllium was 77.5 to 88.2% of the administered beryllium. These findings demonstrate that following aspiration of pharyngeal deposited particles, exposures to the deep lung are repeatable, technically simple, and highly correlated to the administered dose.


Subject(s)
Lung/pathology , Pharynx/physiology , Animals , Beryllium , Dose-Response Relationship, Drug , Fluorescent Dyes , Image Processing, Computer-Assisted , Inhalation , Lung/diagnostic imaging , Mice , Mice, Inbred C3H , Microscopy, Confocal , Microspheres , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...