Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Antimicrob Agents ; 56(6): 106194, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33039591

ABSTRACT

INTRODUCTION: Actively dispersed Pseudomonas aeruginosa biofilm cells differ from planktonic cells, as they have a lower intracellular cyclic di-guanosine monophosphate (c-di-GMP) concentration and show increased virulence. In addition, the nature of the dispersion trigger has been shown to influence the antibiotic susceptibility of dispersed cells. However, properties of passively-dispersed cells, in which the dispersion trigger directly releases cells from the biofilm, have not been described. The present study determined c-di-GMP concentration, virulence in Galleria mellonella and antibiotic susceptibility of P. aeruginosa cells dispersed from biofilm using various triggers. MATERIALS AND METHODS: P. aeruginosa biofilms grown in flow-cells were dispersed actively [exposure to the nitric oxide (NO)-donor sodium nitroprusside (SNP) or to glutamate] or passively [by stopping and restarting the flow or exposure to laser-induced vapor nanobubbles (VNB)], and properties of these dispersed cells were compared to those of spontaneously-dispersed cells. RESULTS: The passively dispersed P. aeruginosa biofilm cells had significantly lower intracellular c-di-GMP levels than actively-dispersed cells. However, this did not result in differences in virulence in Galleria mellonella, nor in tobramycin and ciprofloxacin susceptibility. Passively-dispersed cells were more susceptible to colistin than actively- and spontaneously-dispersed cells. In cells dispersed by interrupting the flow, increased susceptibility to colistin was immediate, whereas this was delayed for VNB-dispersed cells. CONCLUSION: Passively-dispersed P. aeruginosa biofilm cells have a decreased intracellular c-di-GMP concentration and an increased colistin susceptibility compared to actively-dispersed cells. No differences in virulence or susceptibility to tobramycin or colistin were observed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Cyclic GMP/metabolism , Drug Resistance, Bacterial/physiology , Pseudomonas aeruginosa/drug effects , Tobramycin/pharmacology , Animals , Bacterial Load , Biofilms/drug effects , Biofilms/growth & development , Humans , Moths/microbiology , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity
2.
Biofilm ; 2: 100027, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33447812

ABSTRACT

Biofilms are extremely difficult to eradicate due to their decreased antibiotic susceptibility. Inducing biofilm dispersion could be a potential strategy to help combat biofilm-related infections. Mechanisms of biofilm dispersion can basically be divided into two groups, i.e. active and passive dispersion. Active dispersion depends on a decrease in the intracellular c-di-GMP levels, leading to the production of enzymes that degrade the biofilm matrix and promote dispersion. In contrast, passive dispersion relies on triggers that directly release cells from the biofilm. In the present review, several active and passive dispersion strategies are discussed. In addition, the disadvantages and possible consequences of using dispersion as a treatment approach for biofilm-related infections are also reviewed.

3.
Front Microbiol ; 9: 1952, 2018.
Article in English | MEDLINE | ID: mdl-30186266

ABSTRACT

As one of the major pathogens in wound infections, Pseudomonas aeruginosa produces several virulence factors and forms biofilms; these processes are under the regulation of various quorum sensing (QS) systems. Therefore, QS has been regarded as a promising target to treat P. aeruginosa infections. In the present study, we evaluated the effect of the plant-derived QS inhibitor coumarin on P. aeruginosa biofilms and virulence. Coumarin inhibited QS in the P. aeruginosa QSIS2 biosensor strain, reduced protease and pyocyanin production, and inhibited biofilm formation in microtiter plates in different P. aeruginosa strains. The effects of coumarin in inhibiting biofilm formation in an in vitro wound model and reducing P. aeruginosa virulence in the Lucilia sericata infection model were strain-dependent. Transcriptome analysis revealed that several key genes involved in the las, rhl, Pseudomonas quinolone signal (PQS), and integrated QS (IQS) systems were downregulated in coumarin-treated biofilms of P. aeruginosa PAO1. Coumarin also changed the expression of genes related to type III secretion and cyclic diguanylate (c-di-GMP) metabolism. The cellular c-di-GMP level of P. aeruginosa PAO1 and recent clinical P. aeruginosa strains was significantly reduced by coumarin. These results provide new evidence for the possible application of coumarin as an anti-biofilm and anti-virulence agent against P. aeruginosa in wound infections.

4.
Microb Ecol ; 72(3): 503-9, 2016 10.
Article in English | MEDLINE | ID: mdl-27457652

ABSTRACT

Microbial methane oxidizers play a crucial role in the oxidation of methane in marine ecosystems, as such preventing the escape of excessive methane to the atmosphere. Despite the important role of methanotrophs in marine ecosystems, only a limited number of isolates are described, with only four genomes available. Here, we report on two genomes of gammaproteobacterial methanotroph cultures, affiliated with the deep-sea cluster 2, obtained from North Sea sediment. Initial enrichments using methane as sole source of carbon and energy and mimicking the in situ conditions followed by serial subcultivations and multiple extinction culturing events over a period of 3 years resulted in a highly enriched culture. The draft genomes of the methane oxidizer in both cultures showed the presence of genes typically found in type I methanotrophs, including genes encoding particulate methane monooxygenase (pmoCAB), genes for tetrahydromethanopterin (H4MPT)- and tetrahydrofolate (H4F)-dependent C1-transfer pathways, and genes of the ribulose monophosphate (RuMP) pathway. The most distinctive feature, when compared to other available gammaproteobacterial genomes, is the absence of a calcium-dependent methanol dehydrogenase. Both genomes reported here only have a xoxF gene encoding a lanthanide-dependent XoxF5-type methanol dehydrogenase. Thus, these genomes offer novel insight in the genomic landscape of uncultured diversity of marine methanotrophs.


Subject(s)
Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Geologic Sediments/microbiology , Lanthanoid Series Elements/pharmacology , Methylococcaceae/enzymology , Methylococcaceae/genetics , Bacterial Proteins/metabolism , Base Composition , Calcium , DNA, Bacterial/genetics , Ecosystem , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Genome, Bacterial , Metabolic Networks and Pathways/genetics , Methane/metabolism , Methylococcaceae/classification , Methylococcaceae/drug effects , Nitrogen/metabolism , North Sea , Oxidation-Reduction , Oxygenases/genetics , Phylogeny , Seawater/microbiology , Tetrahydrofolates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...