Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 8(5)2019 05 08.
Article in English | MEDLINE | ID: mdl-31072038

ABSTRACT

Acute brain slices are a sample format for electrophysiology, disease modeling, and organotypic cultures. Proteome analyses based on mass spectrometric measurements are seldom used on acute slices, although they offer high-content protein analyses and explorative approaches. In neuroscience, membrane proteins are of special interest for proteome-based analysis as they are necessary for metabolic, electrical, and signaling functions, including myelin maintenance and regeneration. A previously published protocol for the enrichment of plasma membrane proteins based on aqueous two-phase polymer systems followed by mass spectrometric protein identification was adjusted to the small sample size of single acute murine slices from newborn animals and the reproducibility of the results was analyzed. For this, plasma membrane proteins of 12 acute slice samples from six animals were enriched and analyzed by liquid chromatography-mass spectrometry. A total of 1161 proteins were identified, of which 369 were assigned to membranes. Protein abundances showed high reproducibility between samples. The plasma membrane protein separation protocol can be applied to single acute slices despite the low sample size and offers a high yield of identifiable proteins. This is not only the prerequisite for proteome analysis of organotypic slice cultures but also allows for the analysis of small-sized isolated brain regions at the proteome level.


Subject(s)
Brain/metabolism , Membrane Proteins/metabolism , Animals , Cell Membrane/metabolism , Male , Mice, Inbred C57BL , Rats, Wistar , Reproducibility of Results
2.
Int J Mol Sci ; 16(9): 21454-85, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26370973

ABSTRACT

In this study, we searched for proteins that change their expression in the cerebellum (Ce) of rats during ontogenesis. This study focuses on the question of whether specific proteins exist which are differentially expressed with regard to postnatal stages of development. A better characterization of the microenvironment and its development may result from these study findings. A differential two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of the samples revealed that the number of proteins of the functional classes differed depending on the developmental stages. Especially members of the functional classes of biosynthesis, regulatory proteins, chaperones and structural proteins show the highest differential expression within the analyzed stages of development. Therefore, members of these functional protein groups seem to be involved in the development and differentiation of the Ce within the analyzed development stages. In this study, changes in the expression of proteins in the Ce at different postnatal developmental stages (postnatal days (P) 7, 90, and 637) could be observed. At the same time, an identification of proteins which are involved in cell migration and differentiation was possible. Especially proteins involved in processes of the biosynthesis and regulation, the dynamic organization of the cytoskeleton as well as chaperones showed a high amount of differentially expressed proteins between the analyzed dates.


Subject(s)
Cerebellum/metabolism , Proteome , Proteomics , Age Factors , Animals , Cerebellum/embryology , Electrophoresis, Gel, Two-Dimensional , Proteomics/methods , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Proteome Sci ; 13: 8, 2015.
Article in English | MEDLINE | ID: mdl-25709559

ABSTRACT

BACKGROUND: In this study, we searched for proteins that change their expression in the olfactory bulb (oB) of rats during ontogenesis. Up to now, protein expression differences in the developing animal are not fully understood. Our investigation focused on the question whether specific proteins exist which are only expressed during different development stages. This might lead to a better characterization of the microenvironment and to a better determination of factors and candidates that influence the differentiation of neuronal progenitor cells. RESULTS: After analyzing the samples by two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), it could be shown that the number of expressed proteins differs depending on the developmental stages. Especially members of the functional classes, like proteins of biosynthesis, regulatory proteins and structural proteins, show the highest differential expression in the stages of development analyzed. CONCLUSION: In this study, quantitative changes in the expression of proteins in the oB at different developmental stages (postnatal days (P) 7, 90 and 637) could be observed. Furthermore, the expression of many proteins was found at specific developmental stages. It was possible to identify these proteins which are involved in processes like support of cell migration and differentiation.

4.
Gene Expr Patterns ; 15(2): 112-23, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24928808

ABSTRACT

The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion.


Subject(s)
Drosophila melanogaster/embryology , Gene Expression Profiling , Trachea/embryology , Animals , Cell Fusion , Cell Movement , Cytoskeleton/metabolism , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/metabolism , In Situ Hybridization , In Situ Hybridization, Fluorescence , Microarray Analysis , Time Factors , Transcription Factors/genetics , Transgenes
5.
J Mol Neurosci ; 43(3): 290-302, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20725866

ABSTRACT

α-Synuclein (α-syn) is the major constituent of Lewy bodies and glial cytoplasmic inclusions which are pathological hallmarks of neurodegenerative disorders like Parkinson's disease or multiple system atrophy (MSA), respectively. It accumulates and aggregates during the pathogenic process, and missense mutations, such as A53T, are increasing its probability of aggregate formation. Furthermore, α-syn interacts with polyunsaturated fatty acids, and this interaction may promote the oligomerization process. To investigate whether membrane lipid modification by docosahexaenoic acid (DHA) modifies the aggregation process of α-syn in oligodendroglial cells, we have used OLN-93 cells stably expressing the human α-syn A53T mutation. Cells were supplemented with DHA (25 µM) for 3 days and then subjected to oxidative stress (OS) exerted by hydrogen peroxide. The data show that modification of the oligodendroglial cell membranes by DHA followed by OS caused the formation of fibrillary α-syn inclusions, a decrease in α-syn solubility, and an increase in phosphorylation at serine 129, which has been suggested to play a proaggregatory role. The aggregates contain αB-crystallin and ubiquitinated proteins and SUMO-1 immunoreactivity. SUMO-1 has been implicated in protein aggregation and identified as a constituent in inclusion bodies in MSA. Hence, membrane lipid modification in oligodendroglial cells promotes the formation of α-syn inclusion bodies resembling protein aggregates in neurodegenerative disease. This effect is not only attributable to the A53T mutation but also is observable in OLN cells expressing wild-type α-syn.


Subject(s)
Docosahexaenoic Acids/metabolism , Inclusion Bodies/metabolism , Membrane Lipids/metabolism , Oligodendroglia/metabolism , Oxidative Stress , SUMO-1 Protein/metabolism , alpha-Synuclein/metabolism , Animals , Cell Line/drug effects , Humans , Hydrogen Peroxide/pharmacology , Membrane Lipids/chemistry , Oligodendroglia/cytology , Oxidants/pharmacology , Rats , SUMO-1 Protein/genetics , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL