Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters










Publication year range
1.
Lipids ; 57(3): 183-195, 2022 05.
Article in English | MEDLINE | ID: mdl-35318678

ABSTRACT

1-O-Acylceramides (1-OACs) have a fatty acid esterified to the 1-hydroxyl of the sphingosine head group of the ceramide, and recently we identified these lipids as natural components of human and mouse epidermis. Here we show epidermal 1-OACs arise shortly before birth during the establishment of the water permeability barrier in mice. Fractionation of human epidermis indicates 1-OACs concentrate in the stratum corneum. During in vitro maturation into reconstructed human epidermis, human keratinocytes dramatically increase 1-OAC levels indicating they are one source of epidermal 1-OACs. In search of potential enzymes responsible for 1-OAC synthesis in vivo, we analyzed mutant mice with deficiencies of ceramide synthases (Cers2, Cers3, or Cers4), diacylglycerol acyltransferases (Dgat1 or Dgat2), elongase of very long fatty acids 3 (Elovl3), lecithin cholesterol acyltransferase (Lcat), stearoyl-CoA desaturase 1 (Scd1), or acidic ceramidase (Asah1). Overall levels of 1-OACs did not decrease in any mouse model. In Cers3 and Dgat2-deficient epidermis they even increased in correlation with deficient skin barrier function. Dagt2 deficiency reshapes 1-OAC synthesis with an increase in 1-OACs with N-linked non-hydroxylated fatty acids and a 60% decrease compared to control in levels of 1-OACs with N-linked hydroxylated palmitate. As none of the single enzyme deficiencies we examined resulted in a lack of 1-OACs, we conclude that either there is functional redundancy in forming 1-OAC and more than one enzyme is involved, and/or an unknown acyltransferase of the epidermis performs the final step of 1-OAC synthesis, the implications of which are discussed.


Subject(s)
Epidermis , Water , Animals , Ceramides , Fatty Acids , Keratinocytes , Mice , Permeability , Sphingosine N-Acyltransferase
2.
Cell Death Dis ; 9(6): 630, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29795380

ABSTRACT

Correction to: NPG Asia Materials (2018) https://doi.org/10.1038/s41427-018-0014-9 published online on 16 April 2018.

3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 734-749, 2018 07.
Article in English | MEDLINE | ID: mdl-29653252

ABSTRACT

The replacement of two consecutive histidine residues by alanine residues in the catalytic center of ceramide synthase 2 in a new transgenic mouse mutant (CerS2 H/A) leads to inactivation of catalytic activity and reduces protein level to 60% of the WT level. We show here by qRT-PCR and transcriptome analyses that several transcripts of genes involved in lipid metabolism and cell division are differentially regulated in livers of CerS2 H/A mice. Thus, very long chain ceramides produced by CerS2 are required for transcriptional regulation of target genes. The hepatocellular carcinomata previously described in old CerS2 KO mice were already present in 8-week-old CerS2 H/A animals and thus are caused by the loss of CerS2 catalytic activity already during early life.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Division/genetics , Lipid Metabolism/genetics , Liver Neoplasms/genetics , Sphingosine N-Acyltransferase/genetics , Age Factors , Animals , Carcinoma, Hepatocellular/pathology , Ceramides/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver/pathology , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Sphingosine N-Acyltransferase/metabolism
4.
J Neurosci ; 38(8): 2015-2028, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29352045

ABSTRACT

In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse.SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.


Subject(s)
Glutamine/metabolism , Retinal Ganglion Cells/metabolism , Retinal Horizontal Cells/metabolism , Synaptic Transmission/physiology , Animals , Female , Male , Mice , Mice, Transgenic
5.
Brain Res Bull ; 136: 91-100, 2018 01.
Article in English | MEDLINE | ID: mdl-28689039

ABSTRACT

The subgranular zone of the dentate gyrus represents a niche in which radial glia (RG)-like cells generate new neurons throughout postnatal life in the mammalian brain. Previous data showed that RG-like cells are coupled through gap junction channels, primarily formed by connexin43 (Cx43) and Cx30, and that the expression of these proteins is required for adult neurogenesis in the hippocampus. However, their individual function and underlying mechanisms remain unclear. Here we demonstrate that Cx43, but not Cx30, is crucial for adult neurogenesis. To assess whether Cx43-dependent intercellular coupling between RG-like cells or rather channel-independent interactions of the protein regulate neurogenesis, mice bearing a Cx43 point mutation (Cx43G138R) in RG-like cells and protoplasmic astrocytes cells were employed, which was expected to cause channel closure without affecting the trafficking of the protein to the membrane. We confirmed the disruption of coupling between RG-like cells and astrocytes in the hippocampus of Cx43G138R mice. Proliferative activity and neurogenesis in the DG were significantly decreased in the mutant mouse line, indicating that functional Cx43 channels are essential for proper adult neurogenesis. The fate of proliferating cells in the DG was not affected by Cx43 mutation as revealed by 5-bromo-2-deoxyuridine (BrdU) incorporation assays. Together, these findings suggest that adult neurogenesis in the hippocampus does not require Cx30 but channel-dependent functions of Cx43.


Subject(s)
Adult Stem Cells/metabolism , Connexin 30/metabolism , Connexin 43/metabolism , Dentate Gyrus/metabolism , Neural Stem Cells/metabolism , Neurogenesis/physiology , Adult Stem Cells/cytology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Cell Proliferation/physiology , Connexin 30/genetics , Connexin 43/genetics , Dentate Gyrus/cytology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/cytology , Point Mutation
6.
Cell Death Dis ; 8(6): e2845, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28569788

ABSTRACT

Several mutant mice have been generated to model connexin (Cx)-linked skin diseases; however, the role of connexins in skin maintenance and during wound healing remains to be fully elucidated. Here we generated a novel, viable, and fertile mouse (Cx26CK14-S17F/+) with the keratitis-ichthyosis-deafness mutant (Cx26S17F) driven by the cytokeratin 14 promoter. This mutant mouse mirrors several Cx26-linked human skin pathologies suggesting that the etiology of Cx26-linked skin disease indeed stems from epidermal expression of the Cx26 mutant. Cx26CK14-S17F/+ foot pad epidermis formed severe palmoplantar keratoderma, which expressed elevated levels of Cx26 and filaggrin. Primary keratinocytes isolated from Cx26CK14-S17F/+ neonates exhibited reduced gap junctional intercellular communication and migration. Furthermore, Cx26CK14-S17F/+ mouse skin wound closure was normal but repaired epidermis appeared hyperplastic with elevated expression of cytokeratin 6. Taken together, we suggest that the Cx26S17F mutant disturbs keratinocyte differentiation and epidermal remodeling following wound closure. We further posit that Cx26 contributes to epidermal homeostasis by regulating keratinocyte differentiation, and that mice harboring a disease-linked Cx26 mutant display epidermal abnormalities yet retain most wound healing properties.


Subject(s)
Connexins/genetics , Deafness/genetics , Epidermis/metabolism , Ichthyosis/genetics , Keratoderma, Palmoplantar/genetics , Wound Healing/genetics , Animals , Cell Differentiation , Connexin 26 , Connexins/metabolism , Deafness/metabolism , Deafness/pathology , Disease Models, Animal , Epidermis/pathology , Female , Filaggrin Proteins , Founder Effect , Gap Junctions/metabolism , Gap Junctions/pathology , Gene Expression , Humans , Ichthyosis/metabolism , Ichthyosis/pathology , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Keratin-14/genetics , Keratin-14/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Keratoderma, Palmoplantar/metabolism , Keratoderma, Palmoplantar/pathology , Male , Mice , Mice, Transgenic , Mutation , Primary Cell Culture , Promoter Regions, Genetic
7.
FASEB J ; 31(9): 3966-3977, 2017 09.
Article in English | MEDLINE | ID: mdl-28533325

ABSTRACT

Chronically elevated sympathetic nervous activity underlies many cardiovascular diseases. Elucidating the mechanisms contributing to sympathetic nervous system output may reveal new avenues of treatment. The contribution of the gap junctional protein connexin 36 (Cx36) to the regulation of sympathetic activity and thus blood pressure and heart rate was determined using a mouse with specific genetic deletion of Cx36. Ablation of the Cx36 protein was confirmed in sympathetic preganglionic neurons of Cx36-knockout (KO) mice. Telemetric analysis from conscious Cx36 KO mice revealed higher variance in heart rate and blood pressure during rest and activity compared to wild-type (WT) mice, and smaller responses to chemoreceptor activation when anesthetized. In the working heart-brain stem preparation of the Cx36-KO mouse, respiratory-coupled sympathetic nerve discharge was attenuated and responses to chemoreceptor stimulation and noxious stimulation were blunted compared to WT mice. Using whole cell patch recordings, sympathetic preganglionic neurons in spinal cord slices of Cx36-KO mice displayed lower levels of spikelet activity compared to WT mice, indicating reduced gap junction coupling between neurons. Cx36 deletion therefore disrupts normal regulation of sympathetic outflow with effects on cardiovascular parameters.-Lall, V. K., Bruce, G., Voytenko, L., Drinkhill, M., Wellershaus, K., Willecke, K., Deuchars, J., Deuchars, S. A. Physiologic regulation of heart rate and blood pressure involves connexin 36-containing gap junctions.


Subject(s)
Blood Pressure/physiology , Connexins/metabolism , Gap Junctions/physiology , Heart Rate/physiology , Animals , Chemoreceptor Cells/drug effects , Connexins/genetics , Electrophysiological Phenomena , Female , Male , Mice , Mice, Knockout , Sodium Cyanide/pharmacology , Sympathetic Nervous System/physiology , Gap Junction delta-2 Protein
8.
Eur J Immunol ; 47(4): 677-684, 2017 04.
Article in English | MEDLINE | ID: mdl-28198542

ABSTRACT

Well-defined gradients of the lipid mediator sphingosine-1-phosphate (S1P) direct chemotactic egress of mature thymocytes from the thymus into the circulation. Although it is known that these gradients result from low S1P levels in the thymic parenchyma and high S1P concentrations at the exit sites and in the plasma, the biochemical mechanisms that regulate these differential S1P levels remain unclear. Several studies demonstrated that ceramide synthase 2 (Cers2) regulates the levels of the S1P precursor sphingosine. We, therefore, investigated whether Cers2 is involved in the regulation of S1P gradients and S1P-dependent egress into the circulation. By analyzing Cers2-deficient mice, we demonstrate that Cers2 limits the levels of S1P in thymus and blood to maintain functional S1P gradients that mediate thymocyte emigration into the circulation. This function is specific for Cers2, as we also show that Cers4 is not involved in the regulation of thymic egress. Our study identified Cers2 as an important regulator of S1P-dependent thymic egress, and thus contributes to the understanding of how S1P gradients are maintained in vivo.


Subject(s)
Chemotaxis , Sphingosine N-Acyltransferase/metabolism , T-Lymphocytes/physiology , Thymocytes/physiology , Thymus Gland/immunology , Animals , Cell Differentiation , Cell Movement , Cells, Cultured , Lysophospholipids/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine N-Acyltransferase/genetics
9.
Bio Protoc ; 7(11): e2325, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-34541087

ABSTRACT

Functional gap junction channels between neighboring cells can be assessed by microinjection of low molecular weight tracer substances into cultured cells. The extent of direct intercellular communication can be precisely quantified by this method. This protocol describes the iontophoretic injection and visualisation of Neurobiotin into cultured cells.

10.
Stem Cells ; 35(4): 859-871, 2017 04.
Article in English | MEDLINE | ID: mdl-27870307

ABSTRACT

Gap junctional intercellular communication (GJIC) has been suggested to be involved in early embryonic development but the actual functional role remained elusive. Connexin (Cx) 43 and Cx45 are co-expressed in embryonic stem (ES) cells, form gap junctions and are considered to exhibit adhesive function and/or to contribute to the establishment of defined communication compartments. Here, we describe the generation of Cx43/Cx45-double deficient mouse ES cells to achieve almost complete breakdown of GJIC. Cre-loxP induced deletion of both, Cx43 and Cx45, results in a block of differentiation in embryoid bodies (EBs) without affecting pluripotency marker expression and proliferation in ES cells. We demonstrate that GJIC-incompetent ES cells fail to form primitive endoderm in EB cultures, representing the inductive key step of further differentiation events. Lentiviral overexpression of either Cx43 or Cx45 in Cx43/45 mutants rescued the observed phenotype, confirming the specificity and indicating a partially redundant function of both connexins. Upon differentiation GJIC-incompetent ES cells exhibit a strikingly altered subcellular localization pattern of the transcription factor NFATc3. Control EBs exhibit significantly more activated NFATc3 in cellular nuclei than mutant EBs suggesting that Cx-mediated communication is needed for synchronized NFAT activation to induce orchestrated primitive endoderm formation. Moreover, pharmacological inhibition of NFATc3 activation by Cyclosporin A, a well-described inhibitor of calcineurin, phenocopies the loss of GJIC in control cells. Stem Cells 2017;35:859-871.


Subject(s)
Cell Communication , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Endoderm/embryology , Endoderm/metabolism , Gap Junctions/metabolism , Animals , Apoptosis , Biomarkers/metabolism , Calcineurin/metabolism , Cell Differentiation , Cell Proliferation , Connexin 43/metabolism , Connexins/metabolism , Endoderm/cytology , Gastrulation , Lentivirus/metabolism , Mice , Mutagenesis/genetics , NFATC Transcription Factors/metabolism , Signal Transduction
11.
Eur J Neurosci ; 44(1): 1700-13, 2016 07.
Article in English | MEDLINE | ID: mdl-27086873

ABSTRACT

Complex sphingolipids are strongly expressed in neuronal tissue and contain ceramides in their backbone. Ceramides are synthesized by six ceramide synthases (CerS1-6). Although it is known that each tissue has a unique profile of ceramide synthase expression and ceramide synthases are implicated in several neurodegenerative disorders, the expression of ceramide synthase isoforms has not been investigated in the retina. Here we demonstrate CerS1, CerS2 and CerS4 expression in mouse retina and cornea, with CerS4 ubiquitously expressed in all retinal neurons and Müller cells. To test whether ceramide synthase deficiency affects retinal function, we compared electroretinograms and retina morphology between wild-type and CerS1-, CerS2- and CerS4-deficient mice. Electroretinograms were strongly reduced in amplitude in ceramide synthase-deficient mice, suggesting that signalling in the outer retina is affected. However, the number of photoreceptors and cone outer segment length were unaltered and no changes in retinal layer thickness or synaptic structures were found. Mass spectrometric analyses of ceramides, hexosyl-ceramides and sphingomyelins showed that C20 to C24 acyl-containing species were decreased whereas C16-containing species were increased in the retina of ceramide synthase-deficient mice. Similar but smaller changes were also found in the cornea. Thus, we hypothesize that the replacement of very long-chain fatty acyl residues by shorter C16 residues may affect the electrical properties of retina and cornea, and alter receptor-mediated signal transduction, vesicle-mediated synaptic transmission or corneal light transmission. Future studies need to identify the molecular targets of ceramides or derived sphingolipids in light signal transduction and transmission in the eye.


Subject(s)
Cornea/metabolism , Light Signal Transduction , Oxidoreductases/metabolism , Retina/metabolism , Sphingolipids/metabolism , Animals , Ceramides/metabolism , Cornea/enzymology , Electroretinography , Mice , Oxidoreductases/genetics , Retina/enzymology , Retina/physiology
12.
J Invest Dermatol ; 136(3): 574-583, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26777423

ABSTRACT

The keratitis-ichthyosis-deafness (KID) syndrome is characterized by corneal, skin, and hearing abnormalities. KID has been linked to heterozygous dominant missense mutations in the GJB2 and GJB6 genes, encoding connexin26 and 30, respectively. In vitro evidence indicates that KID mutations lead to hyperactive (open) hemichannels, which in some cases is accompanied by abnormal function of gap junction channels. Transgenic mouse models expressing connexin26 KID mutations reproduce human phenotypes and present impaired epidermal calcium homeostasis and abnormal lipid composition of the stratum corneum affecting the water barrier. Here we have compiled relevant data regarding the KID syndrome and propose a mechanism for the epidermal aspects of the disease.


Subject(s)
Calcium Channels/genetics , Connexins/genetics , Epidermis/metabolism , Genetic Predisposition to Disease , Keratitis/genetics , Animals , Cell Membrane Permeability/genetics , Connexin 26 , Gap Junctions/metabolism , Humans , Mice , Mice, Transgenic , Mutation, Missense , Water-Electrolyte Imbalance/genetics , Water-Electrolyte Imbalance/physiopathology
13.
Cell Mol Life Sci ; 73(13): 2583-99, 2016 07.
Article in English | MEDLINE | ID: mdl-26803842

ABSTRACT

Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD.


Subject(s)
Apoptosis , Connexins/analysis , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Animals , Cell Death , Connexins/metabolism , Dystrophin/analysis , Dystrophin/metabolism , Female , Humans , Male , Mice, Inbred mdx , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , NF-kappa B/analysis , NF-kappa B/metabolism , Receptors, Purinergic P2X7/analysis , Receptors, Purinergic P2X7/metabolism
14.
FEBS Lett ; 589(15): 1904-10, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26070424

ABSTRACT

The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome.


Subject(s)
Calcium/metabolism , Connexins/genetics , Deafness/metabolism , Disease Models, Animal , Epidermis/metabolism , Ichthyosis/metabolism , Keratitis/metabolism , Lipid Metabolism , Animals , Connexin 26 , Female , Male , Mice , Microscopy, Fluorescence
15.
Immunol Cell Biol ; 93(9): 825-36, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25833068

ABSTRACT

Ceramides are mediators of inflammatory processes. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed that CerS6 mRNA expression was upregulated 15-fold in peripheral blood leukocytes before the onset of EAE symptoms. In peripheral blood leukocytes from MS patients, a 3.9-fold upregulation was found. Total genetic deletion of CerS6 and the selective deletion of CerS6 in peripheral blood leucocytes exacerbated the progression of clinical symptoms in EAE mice. This was associated with enhanced leukocyte, predominantly neutrophil infiltration and enhanced demyelination in the lumbar spinal cord of EAE mice. Interferon-gamma/tumor necrosis factor alpha (IFN-γ/TNF-α) and granulocyte colony-stimulating factor (G-CSF) both drive EAE development and induce expression of the integrin CD11b and the chemokine receptor C-X-C motif chemokine receptor 2 (CXCR2), and we found they also induce CerS6 expression. In vivo, the genetic deletion of CerS6 enhanced the activation/migration of neutrophils, as reflected by an enhanced upregulation of CD11b and CXCR2. In vitro, the genetic deletion of CerS6 enhanced the activation status of IFN-γ/TNF-α-stimulated neutrophils, as shown by increased expression of nitric oxide and CD11b and an increased adhesion capacity. In G-CSF-stimulated neutrophils, the migration status was enhanced, as reflected by an elevated level of CXCR2 and an increased migration capacity. These data suggest that CerS6/C16-Cer mediates feedback regulation by inhibiting the formation of CD11b and CXCR2, which are induced either by IFN-γ/TNF-α or by G-CSF, respectively. We conclude that CerS6/C16-Cer mediates anti-inflammatory effects during the development of EAE and MS possibly by suppressing the migration and deactivation of neutrophils.


Subject(s)
Cell Movement/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Neutrophils/immunology , Sphingosine N-Acyltransferase/immunology , Adult , Animals , Blotting, Western , Cell Movement/drug effects , Cell Movement/genetics , Cells, Cultured , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Flow Cytometry , Gene Expression/drug effects , Gene Expression/immunology , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Young Adult
16.
J Lipid Res ; 56(4): 821-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25667419

ABSTRACT

Besides bulk amounts of SM, mammalian cells produce small quantities of the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or enzymes responsible for CPE production. Heterologous expression studies revealed that SM synthase (SMS)2 is a bifunctional enzyme producing both SM and CPE, whereas SMS-related protein (SMSr) serves as monofunctional CPE synthase. Acute disruption of SMSr catalytic activity in cultured cells causes a rise in endoplasmic reticulum (ER) ceramides, fragmentation of ER exit sites, and induction of mitochondrial apoptosis. To address the relevance of CPE biosynthesis in vivo, we analyzed the tissue-specific distribution of CPE in mice and generated mouse lines lacking SMSr and SMS2 catalytic activity. We found that CPE levels were >300-fold lower than SM in all tissues examined. Unexpectedly, combined inactivation of SMSr and SMS2 significantly reduced, but did not eliminate, tissue-specific CPE pools and had no obvious impact on mouse development or fertility. While SMSr is widely expressed and serves as the principal CPE synthase in the brain, blocking its catalytic activity did not affect ceramide levels or secretory pathway integrity in the brain or any other tissue. Our data provide a first inventory of CPE species and CPE-biosynthetic enzymes in mammals.


Subject(s)
Biocatalysis , Sphingomyelins/biosynthesis , Transferases (Other Substituted Phosphate Groups)/metabolism , Animals , Brain/cytology , Brain/enzymology , Brain/metabolism , Catalytic Domain , Cell Survival , Enzyme Activation , Exons/genetics , Gene Deletion , Gene Expression Regulation, Enzymologic , Liver/cytology , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Organ Specificity , Phosphatidylethanolamine N-Methyltransferase/metabolism , Point Mutation , Protein Transport , Sphingomyelins/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/deficiency , Transferases (Other Substituted Phosphate Groups)/genetics
17.
Cereb Cortex ; 25(10): 3420-33, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25037920

ABSTRACT

The thalamus plays important roles as a relay station for sensory information in the central nervous system (CNS). Although thalamic glial cells participate in this activity, little is known about their properties. In this study, we characterized the formation of coupled networks between astrocytes and oligodendrocytes in the murine ventrobasal thalamus and compared these properties with those in the hippocampus and cortex. Biocytin filling of individual astrocytes or oligodendrocytes revealed large panglial networks in all 3 gray matter regions. Combined analyses of mice with cell type-specific deletion of connexins (Cxs), semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and western blotting showed that Cx30 is the dominant astrocytic Cx in the thalamus. Many thalamic astrocytes even lack expression of Cx43, while in the hippocampus astrocytic coupling is dominated by Cx43. Deletion of Cx30 and Cx47 led to complete loss of panglial coupling, which was restored when one allele of either Cxs was present. Immunohistochemistry revealed a unique antigen profile of thalamic glia and identified an intermediate cell type expressing both Olig2 and Cx43. Our findings further the emerging concept of glial heterogeneity across brain regions.


Subject(s)
Astrocytes/metabolism , Connexin 43/metabolism , Connexins/metabolism , Hippocampus/metabolism , Neocortex/metabolism , Oligodendroglia/metabolism , Thalamus/metabolism , Animals , Connexin 30 , Female , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Neocortex/cytology , Nerve Net/cytology , Nerve Net/metabolism , Thalamus/cytology
18.
Circ Cardiovasc Genet ; 8(1): 21-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25504652

ABSTRACT

BACKGROUND: Sudden infant death syndrome (SIDS) describes the sudden, unexplained death of a baby during its first year of age and is the third leading cause of infant mortality. It is assumed that ≤20% of all SIDS cases are because of cardiac arrhythmias resulting from mutations in ion channel proteins. Besides ion channels also cardiac gap junction channels are important for proper conduction of cardiac electric activation. In the mammalian heart Connexin43 (Cx43) is the major gap junction protein expressed in ventricular cardiomyocytes. Recently, a novel Connexin43 loss-of-function mutation (Cx43E42K) was identified in a 2-month-old SIDS victim. METHODS AND RESULTS: We have generated Cx43E42K-expressing mice as a model for SIDS. Heterozygous cardiac-restricted Cx43E42K-mutated mice die neonatally without major cardiac morphological defects. Electrocardiographic recordings of embryonic Cx43+/E42K mice reveal severely disturbed ventricular activation, whereas immunohistochemical analyses show normal localization and expression patterns of gap junctional Connexin43 protein in the Cx43E42K-mutated newborn mouse heart. CONCLUSIONS: Because we did not find heterogeneous gap junction loss in Cx43E42K mouse hearts, we conclude that the Cx43E42K gap junction channel creates an arrhythmogenic substrate leading to lethal ventricular arrhythmias. The strong cardiac phenotype of Cx43E42K expressing mice supports the association between the human Cx43E42K mutation and SIDS and indicates that Connexin43 mutations should be considered in future studies when SIDS cases are to be molecularly explained.


Subject(s)
Arrhythmias, Cardiac , Connexin 43 , Gap Junctions , Mutation, Missense , Sudden Infant Death/genetics , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Connexin 43/biosynthesis , Connexin 43/genetics , Gap Junctions/genetics , Gap Junctions/metabolism , Gap Junctions/pathology , Humans , Infant , Mice , Mice, Transgenic
19.
Ann Clin Transl Neurol ; 2(12): 1116-23, 2015 12.
Article in English | MEDLINE | ID: mdl-26734662

ABSTRACT

BACKGROUND: Synthesis of clonal IgG is a consistent feature of patients with multiple sclerosis (MS). Whether oligoclonal bands (OCBs) represent unspecific disease bystanders or active components in MS pathology is an open question. The aim of this study was to develop a method to quantify and compare the reactivity of cerebrospinal fluid (CSF) antibodies from patients with and without MS. METHODS: We collected CSF from 262 patients from two different cohorts, which included 148 patients with MS and 114 with other neurological diseases (OND). We established a highly sensitive electrochemiluminescence (ECL)-based assay to measure CSF antibody reactivity against purified myelin particles and biotin anchored liposomes. The diagnostic value of the ECL score against myelin particles was assessed with receiver operating characteristic curves. RESULTS: CSF from patients with MS have higher reactivity toward purified myelin particles as compared to those with OND with OCBs. Using liposomes with defined lipid compositions and myelin particles from ceramide synthase 2 (CerS2) knockout mice, we find that some of the CSF antibody reactivity is directed against cerebrosides. CONCLUSION: The ECL-based assay system expands the currently available toolbox for the detection of autoantibodies in MS and related diseases.

20.
J Lipid Res ; 55(11): 2354-69, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25267995

ABSTRACT

Mammalian kidneys are rich in sulfatides. Papillary sulfatides, especially, contribute to renal adaptation to chronic metabolic acidosis. Due to differences in their cer-amide (Cer) anchors, the structural diversity of renal sulfatides is large. However, the underling biological function of this complexity is not understood. As a compound's function and its tissue location are intimately connected, we analyzed individual renal sulfatide distributions of control and Cer synthase 2 (CerS)2-deficient mice by imaging MS (IMS) and by LC-MS(2) (in controls for the cortex, medulla, and papillae separately). To explain locally different structures, we compared our lipid data with regional mRNA levels of corresponding anabolic enzymes. The combination of IMS and in source decay-LC-MS(2) analyses revealed exclusive expression of C20-sphingosine-containing sulfatides within the renal papillae, whereas conventional C18-sphingosine-containing compounds were predominant in the medulla, and sulfatides with a C18-phytosphingosine were restricted to special cortical structures. CerS2 deletion resulted in bulk loss of sulfatides with C23/C24-acyl chains, but did not lead to decreased urinary pH, as previously observed in sulfatide-depleted kidneys. The reasons may be the almost unchanged C22-sulfatide levels and constant total renal sulfatide levels due to compensation with C16- to C20-acyl chain-containing compounds. Intriguingly, CerS2-deficient kidneys were completely depleted of phytosphingosine-containing cortical sulfatides without any compensation.


Subject(s)
Kidney/metabolism , Sphingosine N-Acyltransferase/metabolism , Sulfoglycosphingolipids/chemistry , Sulfoglycosphingolipids/metabolism , Animals , Female , Gene Expression Regulation, Enzymologic , Mice , Molecular Imaging , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine C-Palmitoyltransferase/genetics , Sphingosine N-Acyltransferase/deficiency , Sphingosine N-Acyltransferase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...