Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 42: 15-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063086

ABSTRACT

The role of mature collagen cross-links, pentosidine (Pen) cross-links in particular, in the micromechanical properties of cancellous bone is unknown. The aim of this study was to examine nonenzymatic glycation effects on tissue stiffness of demineralized and non-demineralized cancellous bone. A total of 60 bone samples were derived from mandibular condyles of six pigs, and assigned to either control or experimental groups. Experimental handling included incubation in phosphate buffered saline alone or with 0.2M ribose at 37°C for 15 days and, in some of the samples, subsequent complete demineralization of the sample surface using 8% EDTA. Before and after experimental handling, bone microarchitecture and tissue mineral density were examined by means of microcomputed tomography. After experimental handling, the collagen content and the number of Pen, hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were estimated using HPLC, and tissue stiffness was assessed by means of nanoindentation. Ribose treatment caused an up to 300-fold increase in the number of Pen cross-links compared to nonribose-incubated controls, but did not affect the number of HP and LP cross-links. This increase in the number of Pen cross-links had no influence on tissue stiffness of both demineralized and nondemineralized bone samples. These findings suggest that Pen cross-links do not play a significant role in bone tissue stiffness.


Subject(s)
Arginine/analogs & derivatives , Lysine/analogs & derivatives , Mandibular Condyle/chemistry , Mandibular Condyle/physiology , Ribose/chemistry , Animals , Arginine/chemistry , Biomechanical Phenomena , Collagen/chemistry , Female , Lysine/chemistry , Nanostructures/chemistry , Pliability/physiology , Swine
2.
J Bone Miner Metab ; 32(1): 29-37, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23624768

ABSTRACT

The aim of this study was to correlate the local tissue mineral density (TMD) with the bone tissue stiffness. It was hypothesized that these variables are positively correlated. Cancellous and cortical bone samples were derived from ten mandibular condyles taken from 5 young and 5 adult female pigs. The bone tissue stiffness was assessed in three directions using nanoindentation. At each of three tested sides 5 indents were made over the width of 5 single bone elements, resulting in a total number of 1500 indents. MicroCT was used to determine the local TMD at the indented sites. The TMD and the bone tissue stiffness were higher in bone from the adult animals than from the young ones, but did not differ between cancellous and cortical bone. In the adult group, both the TMD and the bone tissue stiffness were higher in the center than at the surface of the bone elements. The mean TMD, thus ignoring the local mineral distribution, had a coefficient of determination (R(2)) with the mean bone tissue stiffness of 0.55, p < 0.05, whereas the correlation between local bone tissue stiffness and the concomitant TMD appeared to be weak (R (2) 0.07, p < 0.001). It was concluded that the mineralization degree plays a larger role in bone tissue stiffness in cancellous than in cortical bone. Our data based on bone from the mandibular condyle suggest that the mineralization degree is not a decisive determinant of the local bone tissue stiffness.


Subject(s)
Calcification, Physiologic/physiology , Mandibular Condyle/physiology , Animals , Biomechanical Phenomena , Bone Density/physiology , Elastic Modulus/physiology , Female , Sus scrofa
3.
Eur J Orthod ; 36(4): 479-85, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24375755

ABSTRACT

BACKGROUND: Bone constantly strives for optimal architecture. Mandibular condyle, which is subjected to various mechanical loads forcing it to be highly adaptive, has a unique structure and a relatively high remodelling rate. Despite the eminent clinical relevance of mandibular condyle, literature on its structural and biomechanical development and on the mechanical role of its mineralized and non-mineralized bone components is scarce. OBJECTIVE: The aim of the present review is to provide a brief introduction to basic bone mechanics and a synopsis of the growth and development of human mandibular condyle. Subsequently, the current ideas on the relationship between the structural and biomechanical properties of bone in general and of mandibular condyle in particular are reviewed. Finally, up-to-date knowledge from fundamental bone research will be blended with the current knowledge relevant to clinical dentistry, above all orthodontics. METHODS: A comprehensive literature study was performed with an emphasis on recent and innovative work focusing on the interaction between microarchitectural and micromechanical properties of bone. CONCLUSIONS: Mandibular condyle is a bone structure with a high bone turnover rate. Mechanical properties of mandibular condyle improve during adolescence and are optimal during adulthood. Local mineralization degree might not be a decisive determinant of the local bone tissue stiffness as was believed hitherto. Bone collagen and its cross links play a role in toughness and tensile strength of bone but not in its compressive properties. Clinical procedures might affect mandibular condyle, which is highly reactive to changes in its mechanical environment.


Subject(s)
Mandibular Condyle/ultrastructure , Biomechanical Phenomena , Bone Remodeling/physiology , Collagen/physiology , Collagen/ultrastructure , Humans , Mandibular Condyle/growth & development , Mandibular Condyle/physiology , Stress, Mechanical , Tensile Strength
4.
J Biomech ; 44(6): 1132-6, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21333996

ABSTRACT

Although bone-tissue stiffness is closely related to the degree to which bone has been mineralized, other determinants are yet to be identified. We, therefore, examined the extent to which the mineralization degree, collagen, and its cross-links are related to bone-tissue stiffness. A total of 50 cancellous and cortical bone samples were derived from the right mandibular condyles of five young and five adult female pigs. The degree of mineralization of bone (DMB) was assessed using micro-computed tomography. Using high-performance liquid chromatography, we quantified the collagen content and the number of cross-links per collagen molecule of two enzymatic cross-links: hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), and one non-enzymatic cross-link: pentosidine (Pen). Nanoindentation was used to assess bone-tissue stiffness in three directions, and multiple linear regressions were used to calculate the correlation between collagen properties and bone-tissue stiffness, with the DMB as first predictor. Whereas the bone-tissue stiffness of cancellous bone did not differ between the three directions of nanoindentation, or between the two age groups, cortical bone-tissue stiffness was higher in the adult tissue. After correction for DMB, the cross-links studied did not increase the explained variance. In the young group, however, LP significantly improved the explained variance in bone-tissue stiffness. Approximately half of the variation in bone-tissue stiffness in cancellous and cortical bone was explained by the DMB and the LP cross-links and thus they cannot be considered the sole determinants of the bone-tissue stiffness.


Subject(s)
Aging/metabolism , Calcification, Physiologic/physiology , Collagen/metabolism , Mandibular Condyle/metabolism , Animals , Female , Swine
5.
Calcif Tissue Int ; 86(4): 307-12, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20225089

ABSTRACT

Collagen is an important constituent of bone, and it has been suggested that changes in collagen and mineral properties of bone are interrelated during growth. The aim of this study was to quantify age-related changes in collagen properties and the degree of mineralization of bone (DMB). The DMB in cancellous and cortical bone samples from the mandibular condyle of 35 female pigs aged 0-100 weeks was determined using micro-computed tomography. Subsequently, the amount of collagen and the number of pentosidine (Pen), hydroxylysylpyridinoline (HP), and lysylpyridinoline (LP) cross-links were quantified by means of high-performance liquid chromatography. The amount of collagen increased with age in cancellous bone but remained unchanged in cortical bone. The number of Pen and LP cross-links decreased in both bone types. In contrast, the number of HP cross-links decreased only in cancellous bone. The sum of the number of HP and LP cross-links decreased with age in cancellous bone only. The DMB increased in cancellous and cortical bone. It was concluded that the largest changes in the number of mature collagen cross-links and the mineralization in porcine cancellous and cortical bone take place before the age of 40 weeks. The low number of mature cross-links after this age suggests that the bone turnover rate continues to be high and thereby prevents the development of mature cross-links.


Subject(s)
Aging/physiology , Bone and Bones/metabolism , Calcification, Physiologic/physiology , Collagen/chemistry , Collagen/metabolism , Mandibular Condyle/metabolism , Aging/metabolism , Animals , Bone Density/physiology , Chromatography, High Pressure Liquid , Collagen/analysis , Female , Mandibular Condyle/diagnostic imaging , Mandibular Condyle/physiology , Mandibular Condyle/ultrastructure , Swine , X-Ray Microtomography
6.
J Struct Biol ; 158(3): 421-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17300959

ABSTRACT

The mandibular condyle is considered a good model for developing cancellous bone because of its rapid growth and high rate of remodeling. The aim of the present study was to analyze the simultaneous changes in microarchitecture and mineralization of cancellous bone during development in a three-dimensional fashion. Eight mandibular condyles of pigs aged 8 weeks prepartum to 108 weeks postpartum were scanned using microCT with an isotropic spatial resolution of 10 microm. The number of trabeculae decreased during development, whereas both the trabecular thickness and the distance between the trabeculae increased. The bone surface to volume ratio decreased during development, possibly limiting the amount of (re)modeling. Both the mean degree of mineralization and intratrabecular differences in mineralization between the surfaces and cores of trabecular elements increased during development. The trabecular surfaces were more highly mineralized in the older condyles compared to the younger ones. Together with the observed decrease in the relative size of trabecular surface, this finding suggests a decrease in (re)modeling activity during development. In accordance with the general growth and development of the pig, it was concluded that most developmental changes in cancellous bone occur until the age of 40 weeks postpartum.


Subject(s)
Bone Development , Bone and Bones/ultrastructure , Calcification, Physiologic , Mandibular Condyle/ultrastructure , Age Factors , Animals , Bone and Bones/diagnostic imaging , Female , Mandibular Condyle/diagnostic imaging , Mandibular Condyle/growth & development , Sus scrofa , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...