Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Eur J Clin Invest ; 54(6): e14189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38429948

ABSTRACT

BACKGROUND: Disturbances in habitual sleep have been associated with multiple age-associated diseases. However, the biological mechanisms underpinning these associations remain largely unclear. We assessed the possible involvement of the circulating immune system by determining the associations between sleep traits and white blood cell counts using multivariable-adjusted linear regression and Mendelian randomization. METHODS: Cross-sectional multivariable-adjusted linear regression analyses were done using participants within the normal range of total white blood cell counts (>4.5 × 109 and <11.0 × 109/µL) from UK Biobank. For the sleep traits, we examined (short and long) sleep duration, chronotype, insomnia symptoms and daytime dozing. Two-sample Mendelian randomization analyses were done using instruments for sleep traits derived from European-ancestry participants from UK Biobank (over 410,000 participants) and using SNP-outcome data derived from European-ancestry participants from the Blood Cell Consortium (N = 563,946) to which no data from UK Biobank contributed. RESULTS: Using data from 357,656 participants (mean [standard deviation] age: 56.5 [8.1] years, and 44.4% men), we did not find evidence that disturbances in any of the studied sleep traits were associated with differences in blood cell counts (total, lymphocytes, neutrophiles, eosinophiles and basophiles). Also, we did not find associations between disturbances in any of the studied sleep traits and white blood cell counts using Mendelian Randomization. CONCLUSION: Based on the results from two different methodologies, disturbances in habitual sleep are unlikely to cause changes in blood cell counts and thereby differences in blood cell counts are unlikely to be underlying the observed sleep-disease associations.


Subject(s)
Mendelian Randomization Analysis , Sleep , Humans , Male , Female , Middle Aged , Leukocyte Count , Cross-Sectional Studies , Sleep/genetics , Sleep/physiology , Aged , Sleep Initiation and Maintenance Disorders/genetics , Sleep Initiation and Maintenance Disorders/epidemiology , Linear Models , Polymorphism, Single Nucleotide , Adult , Multivariate Analysis
2.
Am J Clin Nutr ; 119(5): 1354-1370, 2024 May.
Article in English | MEDLINE | ID: mdl-38494119

ABSTRACT

BACKGROUND: Metabolite abundance is a dynamic trait that varies in response to environmental stimuli and phenotypic traits, such as food consumption and body mass index (BMI, kg/m2). OBJECTIVES: In this study, we used the Netherlands Epidemiology of Obesity (NEO) study data to identify observational and causal associations between BMI and metabolite response to a liquid meal. METHODS: A liquid meal challenge was performed, and Nightingale Health metabolite profiles were collected in 5744 NEO participants. Observational and one-sample Mendelian randomization (MR) analysis were conducted to estimate the effect of BMI on metabolites (n = 229) in the fasting, postprandial, and response (or change in abundance) states. RESULTS: We observed 473 associations with BMI (175 fasting, 188 postprandial, and 110 response) in observational analyses. In MR analyses, we observed 20 metabolite traits (5 fasting, 12 postprandial, and 3 response) to be associated with BMI. MR associations included the glucogenic amino acid alanine, which was inversely associated with BMI in the response state (ß: -0.081; SE: 0.023; P = 5.91 × 10-4), suggesting that as alanine increased in postprandial abundance, that increase was attenuated with increasing BMI. CONCLUSIONS: Overall, this study showed that MR estimates were strongly correlated with observational effect estimates, suggesting that the broad associations seen between BMI and metabolite variation has a causal underpinning. Specific effects in previously unassessed postprandial and response states are detected, and these may likely mark novel life course risk exposures driven by regular nutrition.


Subject(s)
Body Mass Index , Meals , Mendelian Randomization Analysis , Postprandial Period , Humans , Female , Male , Middle Aged , Netherlands , Adult , Obesity/metabolism , Obesity/genetics , Fasting
3.
J Clin Epidemiol ; 162: 56-62, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37500025

ABSTRACT

OBJECTIVES: Low socioeconomic status (SES) is associated with cardiovascular risk factors and increased coronary artery disease (CAD) risk. We tested whether SES is an effect modifier of the association between classical cardiovascular risk factors and CAD using SES-stratified Mendelian Randomization in European-ancestry participants from UK Biobank. STUDY DESIGN AND SETTING: We calculated weighted genetic risk scores (GRS) for the risk factors body mass index (BMI), systolic blood pressure, low-density lipoprotein cholesterol, and triglycerides. Participants were stratified by Townsend deprivation index score. Logistic regression models were used to investigate associations between GRSs and CAD occurrence. Additionally, stratification based on GRS-adjusted Townsend deprivation index residuals was conducted to correct for possible collider-stratification bias. RESULTS: In a total sample size of N = 446,485, with 52,946 cases, the risk for CAD per standard deviation increase in genetically influenced BMI was highest in the group with the lowest 25% SES (odds ratio: 1.126, 95% confidence interval: 1.106-1.145; odds ratio: 1.081, 95% confidence interval: 1.059-1.103 in high SES), remaining similar after controlling for possible collider-stratification bias. The effects of genetically influenced systolic blood pressure, low-density lipoprotein cholesterol, and triglyceride on CAD were similar between SES groups. CONCLUSION: CAD risk attributable to increased BMI is not homogenous and could be modified by SES. This emphasizes the need of tailor-made approaches for BMI-associated CAD risk reduction.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Risk Factors , Cardiovascular Diseases/epidemiology , Mendelian Randomization Analysis , Heart Disease Risk Factors , Triglycerides , Lipoproteins, LDL/genetics , Cholesterol , Genome-Wide Association Study , Polymorphism, Single Nucleotide
4.
Obesity (Silver Spring) ; 31(7): 1933-1941, 2023 07.
Article in English | MEDLINE | ID: mdl-37254031

ABSTRACT

OBJECTIVE: This study aimed to investigate whether independent dimensions of metabolic syndrome (MetS) components are associated differentially with incident cardiometabolic diseases. METHODS: Principal components analysis was performed using the five MetS components from 153,073 unrelated European-ancestry participants (55% women) from the UK Biobank. The associations of the principal components (PCs) with incident type 2 diabetes mellitus (T2D), coronary artery disease (CAD), and (ischemic) stroke were analyzed using multivariable-adjusted Cox proportional hazards models in groups stratified by sex and baseline age. RESULTS: PC1 (40.5% explained variance; increased waist circumference with dyslipidemia) and PC2 (22.7% explained variance; hyperglycemia) were both associated with incident cardiometabolic disease. Hazard ratios for CAD and T2D were higher for PC1 than for PC2 (1.27 [95% CI: 1.25-1.29] vs. 1.06 [95% CI: 1.03-1.08] and 2.09 [95% CI: 2.03-2.16] vs. 1.39 [95% CI: 1.34-1.44], respectively). Furthermore, the association of PC1 with T2D was slightly higher for women than for men, and especially the HRs of PC1 with CAD and T2D attenuated with increasing age (p values for heterogeneity test among subgroups < 0.05). CONCLUSIONS: MetS can be dissected into two distinct presentations characterized by differential sex- and age-associated cardiometabolic disease risk, confirming the loss of information using the dichotomous MetS.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Dyslipidemias , Metabolic Syndrome , Male , Humans , Female , Metabolic Syndrome/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Age Factors , Risk Factors
5.
Atherosclerosis ; 376: 19-25, 2023 07.
Article in English | MEDLINE | ID: mdl-37257353

ABSTRACT

BACKGROUND AND AIMS: Mendelian randomization confirmed multiple risk factors for primary events of coronary artery disease (CAD), but no such studies have been performed on recurrent major coronary events despite interesting insights derived from other designs. We examined the associations between genetically-influenced classical cardiovascular risk factors and the risk of recurrent major coronary events in a cohort of CAD patients. METHODS: We included all first-time CAD cases (defined as angina pectoris, chronic ischemic heart disease or acute myocardial infarction) of European ancestry from the UK Biobank. Cases were followed till the end of follow-up, death or when they developed a recurrent major coronary event (chronic ischemic heart disease or acute myocardial infarction). Standardized weighted genetic risk scores were calculated for body mass index (BMI), systolic blood pressure, LDL cholesterol and triglycerides. RESULTS: From a total of 22,949 CAD patients (mean age at first diagnosis 59.8 (SD 7.3) years, 71.1% men), 12,539 (54.6%) reported a recurrent major coronary event within a period of maximum 17.8 years. One standard deviation higher genetically-determined LDL cholesterol was associated with a higher risk of a recurrent major coronary event (odds ratio: 1.08 [95% confidence interval: 1.05, 1.11]). No associations were observed for genetically-influenced BMI (1.00 [0.98, 1.03]), systolic blood pressure (1.01 [0.98, 1.03]) and triglycerides (1.02 [0.995, 1.05]). CONCLUSIONS: Despite the use risk-reducing medications following a first coronary event, this study provided genetic evidence that, of the classical risk factors, mainly high LDL cholesterol was associated with a higher risk of developing recurrent major coronary events.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Myocardial Infarction , Myocardial Ischemia , Male , Humans , Middle Aged , Female , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Cardiovascular Diseases/genetics , Risk Factors , Cholesterol, LDL , Biological Specimen Banks , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/genetics , Heart Disease Risk Factors , Triglycerides , United Kingdom/epidemiology , Mendelian Randomization Analysis
6.
Nutr Metab Cardiovasc Dis ; 33(5): 1077-1086, 2023 05.
Article in English | MEDLINE | ID: mdl-36958975

ABSTRACT

BACKGROUND AND AIMS: Leptin has been associated with adverse effects on cardiovascular disease, but the effect of confounding by body fat in these associations remains unclear. To investigate associations between leptin and heart function and subclinical cardiovascular disease adjusted for total body fat, and to investigate the causal relation between leptin and cardiovascular disease using Mendelian randomisation. METHODS AND RESULTS: Leptin concentrations, total body fat and diverse measures of subclinical cardiovascular disease were determined in participants of the Netherlands Epidemiology of Obesity study. Linear regression between leptin concentration and measures of heart function, ECG measures, and carotid intima media thickness as a measure of subclinical atherosclerosis was adjusted for potential confounding factors, and additionally including total body fat. We analysed the combined effects of genetic variants from a GWAS on leptin concentrations in publicly-available summary statistics of coronary heart disease GWAS (CARDIoGRAMplusC4D, n = 184,305). As many as 6107 men and women, mean (SD) age 56 (6) years, BMI 26 (4) kg/m2, and median leptin concentration 12.1 µg (IQR: 6.7-22.6) were included. In observational analyses, leptin was weakly associated with heart function and subclinical cardiovascular disease, but these associations attenuated when adjusting for total body fat. A doubling of genetically-determined leptin concentration was associated with an odds ratio of cardiovascular disease of 0.69 (0.37, 1.27). CONCLUSION: Observational associations between leptin and subclinical measures of cardiovascular disease were largely explained by differences in total body fat. Results of analyses of genetically-determined leptin and coronary heart disease risk were inconclusive due to a large confidence interval.


Subject(s)
Cardiovascular Diseases , Coronary Disease , Male , Humans , Female , Middle Aged , Leptin/genetics , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Carotid Intima-Media Thickness , Mendelian Randomization Analysis , Adipose Tissue/diagnostic imaging , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Coronary Disease/genetics , Risk Factors
7.
Psychol Med ; 53(1): 248-257, 2023 01.
Article in English | MEDLINE | ID: mdl-34078486

ABSTRACT

BACKGROUND: A recent hypothesis postulates the existence of an 'immune-metabolic depression' (IMD) dimension characterized by metabolic dysregulations. Combining data on metabolomics and depressive symptoms, we aimed to identify depressions associated with an increased risk of adverse metabolic alterations. METHOD: Clustering data were from 1094 individuals with major depressive disorder in the last 6 months and measures of 149 metabolites from a 1H-NMR platform and 30 depressive symptoms (IDS-SR30). Canonical correlation analyses (CCA) were used to identify main independent metabolite-symptom axes of variance. Then, for the replication, we examined the association of the identified dimensions with metabolites from the same platform and cardiometabolic diseases in an independent population-based cohort (n = 6572). RESULTS: CCA identified an overall depression dimension and a dimension resembling IMD, in which symptoms such as sleeping too much, increased appetite, and low energy level had higher relative loading. In the independent sample, the overall depression dimension was associated with lower cardiometabolic risk, such as (i.e. per s.d.) HOMA-1B -0.06 (95% CI -0.09 - -0.04), and visceral adipose tissue -0.10 cm2 (95% CI -0.14 - -0.07). In contrast, the IMD dimension was associated with well-known cardiometabolic diseases such as higher visceral adipose tissue 0.08 cm2 (95% CI 0.04-0.12), HOMA-1B 0.06 (95% CI 0.04-0.09), and lower HDL-cholesterol levels -0.03 mmol/L (95% CI -0.05 - -0.01). CONCLUSIONS: Combining metabolomics and clinical symptoms we identified a replicable depression dimension associated with adverse metabolic alterations, in line with the IMD hypothesis. Patients with IMD may be at higher cardiometabolic risk and may benefit from specific treatment targeting underlying metabolic dysregulations.


Subject(s)
Cardiovascular Diseases , Depressive Disorder, Major , Humans , Depression/epidemiology , Depressive Disorder, Major/epidemiology , Metabolomics , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/metabolism , Body Mass Index
8.
Geroscience ; 45(1): 463-476, 2023 02.
Article in English | MEDLINE | ID: mdl-36129566

ABSTRACT

While obesity increases the risk of developing cardiometabolic diseases (CMDs), these associations seem to attenuate with increasing age, albeit studied poorly. The present study aimed to investigate the associations between adiposity and CMDs in sex-specific groups of chronological age and leukocyte telomere length (LTL) as a measure of biological age. We investigated the associations between BMI, a body shape index, waist-to-hip ratio (adjusted for BMI) and total body fat, and incident coronary artery disease (CAD), type 2 diabetes (T2D) and ischemic stroke (IS) in 413,017 European-ancestry participants of the UK Biobank without CMD at baseline. We assessed the change in the associations between adiposity and CMD over strata of increasing chronological age or decreasing LTL. Participants (56% women) had a median (IQR) age of 57.0 (50.0-63.0) years. The median follow-up time was 12 years. People with higher BMI had a higher risk of incident CAD (HR 1.14 (95% confidence interval [CI] 1.13, 1.16)), T2D (HR 1.70 (95% CI 1.68, 1.72)) and IS (HR 1.09 (95% CI 1.06, 1.12)). In groups based on chronological age and LTL, adiposity measures were associated with higher risk of CAD and T2D in both men and women, but these associations attenuated with increasing chronological age (Pinteractions < 0.001), but not with decreasing LTL (Pinteraction men = 0.85; Pinteraction women = 0.27). Increased (abdominal) adiposity was associated with higher risk of incident CMDs, which attenuated with increasing chronological age but not with decreasing LTL. Future research may validate these findings using different measures of biological age.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Male , Humans , Female , Adiposity , Diabetes Mellitus, Type 2/epidemiology , Incidence , Somatotypes , Body Mass Index , Obesity/complications , Obesity/epidemiology , Aging
9.
Addict Behav Rep ; 16: 100457, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36187563

ABSTRACT

Introduction: Self-report and nicotine detection are methods to measure smoking exposure and can both lead to misclassification. It is important to highlight discrepancies between these two methods in the context of epidemiological research. Objective: The aim of this cross-sectional study is to assess the agreements between self-reported smoking status and nicotine metabolite detection. Methods: Data of 599 participants from the Netherlands Epidemiology of Obesity study were used to compare serum metabolite levels of five nicotine metabolites (cotinine, hydroxy-cotinine, cotinine N-Oxide, norcotinine, 3-hydroxy-cotinine-glucuronide) between self-reported never smokers (n = 245), former smokers (n = 283) and current smokers (n = 71). We assessed whether metabolites were absent or present and used logistic regression to discriminate between current and never smokers based on nicotine metabolite information. A classification tree was derived to classify individuals into current smokers and non/former smokers based on metabolite information. Results: In 94% of the self-reported current smokers, at least one metabolite was present, versus in 19% of the former smokers and in 10% of the never smokers. In none of the never smokers, cotinine-n-oxide, 3-hydroxy-cotinine-n-glucorinide or norcotinine was present, while at least one of these metabolites was detected in 68% of the self-reported current smokers. The classification tree classified 95% of the participants in accordance to their self-reported smoking status. All self-reported smokers who were classified as non-smokers according to the metabolite profile, had reported to be occasional smokers. Conclusion: The agreement between self-reported smoking status and metabolite information was high. This indicates that self-reported smoking status is generally reliable.

10.
Atherosclerosis ; 354: 1-7, 2022 08.
Article in English | MEDLINE | ID: mdl-35793595

ABSTRACT

BACKGROUND AND AIMS: Mitochondrial dysfunction is associated with increased reactive oxygen species (ROS) that are thought to drive disease risk, including stroke. We investigated the association between mtDNA abundance, as a proxy measure of mitochondrial function, and incident stroke, using multivariable-adjusted survival and Mendelian Randomization (MR) analyses. METHODS: Cox-proportional hazard model analyses were conducted to assess the association between mtDNA abundance, and incident ischemic and hemorrhagic stroke over a maximum of 14-year follow-up in European-ancestry participants from UK Biobank. MR was conducted using independent (R2 < 0.001) lead variants for mtDNA abundance (p < 5 × 10-8) as instrumental variables. Single-nucleotide polymorphism (SNP)-ischemic stroke associations were derived from three published open source European-ancestry results databases (cases/controls): MEGASTROKE (60,341/454,450), UK Biobank (2404/368,771) and FinnGen (10,551/202,223). MR was performed per study, and results were subsequently meta-analyzed. RESULTS: In total, 288,572 unrelated participants (46% men) with mean (SD) age of 57 (8) years were included in the Cox-proportional hazard analyses. After correction for considered confounders (BMI, hypertension, cholesterol, T2D), no association was found between low versus high mtDNA abundance and ischemic (HR: 1.06 [95% CI: 0.95, 1.18]) or hemorrhagic (HR: 0.97 [95% CI: 0.82, 1.15]) stroke. However, in the MR analyses after removal of platelet count-associated SNPs, we found evidence for an association between genetically-influenced mtDNA abundance and ischemic stroke (odds ratio, 1.17; confidence interval, 1.03, 1.32). CONCLUSIONS: Although the results from both multivariable-adjusted prospective and basis MR analyses did not show an association between low mtDNA and increased risk of ischemic stroke, in-depth MR sensitivity analyses may suggest evidence for a causal relationship.


Subject(s)
Ischemic Stroke , Stroke , DNA, Mitochondrial/genetics , Female , Genome-Wide Association Study , Humans , Ischemia/complications , Male , Mendelian Randomization Analysis , Middle Aged , Mitochondria , Polymorphism, Single Nucleotide , Prospective Studies , Risk Factors , Stroke/complications , Stroke/epidemiology , Stroke/genetics
11.
Diabetologia ; 65(10): 1676-1686, 2022 10.
Article in English | MEDLINE | ID: mdl-35867128

ABSTRACT

AIMS/HYPOTHESIS: Mitochondrial dysfunction, which can be approximated by blood mitochondrial DNA copy number (mtDNA-CN), has been implicated in the pathogenesis of type 2 diabetes mellitus. Thus far, however, insights from prospective cohort studies and Mendelian randomisation (MR) analyses on this relationship are limited. We assessed the association between blood mtDNA-CN and incident type 2 diabetes using multivariable-adjusted regression analyses, and the associations between blood mtDNA-CN and type 2 diabetes and BMI using bi-directional MR. METHODS: Multivariable-adjusted Cox proportional hazard models were used to estimate the association between blood mtDNA-CN and incident type 2 diabetes in 285,967 unrelated European individuals from UK Biobank free of type 2 diabetes at baseline. Additionally, a cross-sectional analysis was performed to investigate the association between blood mtDNA-CN and BMI. We also assessed the potentially causal relationship between blood mtDNA-CN and type 2 diabetes (N=898,130 from DIAGRAM, N=215,654 from FinnGen) and BMI (N=681,275 from GIANT) using bi-directional two-sample MR. RESULTS: During a median follow-up of 11.87 years, 15,111 participants developed type 2 diabetes. Participants with a higher level of blood mtDNA-CN are at lower risk of developing type 2 diabetes (HR 0.90 [95% CI 0.89, 0.92]). After additional adjustment for BMI and other confounders, these results attenuated moderately and remained present. The multivariable-adjusted cross-sectional analyses showed that higher blood mtDNA-CN was associated with lower BMI (-0.12 [95% CI -0.14, -0.10]) kg/m2. In the bi-directional MR analyses, we found no evidence for causal associations between blood mtDNA-CN and type 2 diabetes, and blood mtDNA-CN and BMI in either direction. CONCLUSIONS/INTERPRETATION: The results from the present study indicate that the observed association between low blood mtDNA-CN and higher risk of type 2 diabetes is likely not causal.


Subject(s)
DNA, Mitochondrial , Diabetes Mellitus, Type 2 , Cross-Sectional Studies , DNA Copy Number Variations/genetics , DNA, Mitochondrial/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Mitochondria , Prospective Studies
12.
Curr Microbiol ; 79(9): 276, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35907023

ABSTRACT

The composition of microbial communities is commonly determined by sequence analyses of one of the variable (V) regions in the bacterial 16S rRNA gene. We aimed to assess whether sequencing the full-length versus the V4 region of the 16S rRNA gene affected the results and interpretation of an experiment. To test this, mice were fed a diet without and with the prebiotic inulin and from cecum samples, two primary data sets were generated: (1) a 16S rRNA full-length data set generated by the PacBio platform; (2) a 16S rRNA V4 region data set generated by the Illumina MiSeq platform. A third derived data set was generated by in silico extracting the 16S rRNA V4 region data from the 16S rRNA full-length PacBio data set. Analyses of the primary and derived 16S rRNA V4 region data indicated similar bacterial abundances, and α- and ß-diversity. However, comparison of the 16S rRNA full-length data with the primary and derived 16S rRNA V4 region data revealed differences in relative bacterial abundances, and α- and ß-diversity. We conclude that the sequence length of 16S rRNA gene and not the sequence analysis platform affected the results and may lead to different interpretations of the effect of an intervention that affects the microbiota.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing/methods , Mice , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
13.
Int J Epidemiol ; 51(6): 1874-1885, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35656699

ABSTRACT

BACKGROUND: There is inconsistent evidence for the causal role of serum insulin-like growth factor-1 (IGF-1) concentration in the pathogenesis of human age-related diseases such as type 2 diabetes (T2D). Here, we investigated the association between IGF-1 and T2D using (clustered) Mendelian randomization (MR) analyses in the UK Biobank. METHODS: We conducted Cox proportional hazard analyses in 451 232 European-ancestry individuals of the UK Biobank (55.3% women, mean age at recruitment 56.6 years), among which 13 247 individuals developed type 2 diabetes during up to 12 years of follow-up. In addition, we conducted two-sample MR analyses based on independent single nucleotide polymorphisms (SNPs) associated with IGF-1. Given the heterogeneity between the MR effect estimates of individual instruments (P-value for Q statistic = 4.03e-145), we also conducted clustered MR analyses. Biological pathway analyses of the identified clusters were performed by over-representation analyses. RESULTS: In the Cox proportional hazard models, with IGF-1 concentrations stratified in quintiles, we observed that participants in the lowest quintile had the highest relative risk of type 2 diabetes [hazard ratio (HR): 1.31; 95% CI: 1.23-1.39). In contrast, in the two-sample MR analyses, higher genetically influenced IGF-1 was associated with a higher risk of type 2 diabetes. Based on the heterogeneous distribution of MR effect estimates of individual instruments, six clusters of genetically determined IGF-1 associated either with a lower or a higher risk of type 2 diabetes were identified. The main clusters in which a higher IGF-1 was associated with a lower risk of type 2 diabetes consisted of instruments mapping to genes in the growth hormone signalling pathway, whereas the main clusters in which a higher IGF-1 was associated with a higher risk of type 2 diabetes consisted of instruments mapping to genes in pathways related to amino acid metabolism and genomic integrity. CONCLUSIONS: The IGF-1-associated SNPs used as genetic instruments in MR analyses showed a heterogeneous distribution of MR effect estimates on the risk of type 2 diabetes. This was likely explained by differences in the underlying molecular pathways that increase IGF-1 concentration and differentially mediate the effects of IGF-1 on type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Mendelian Randomization Analysis , Female , Humans , Middle Aged , Male , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Insulin-Like Growth Factor I/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study
14.
J Lipid Res ; 63(5): 100193, 2022 05.
Article in English | MEDLINE | ID: mdl-35278410

ABSTRACT

Triglyceride (TG)-lowering LPL variants in combination with genetic LDL-C-lowering variants are associated with reduced risk of coronary artery disease (CAD). Genetic variation in the APOA5 gene encoding apolipoprotein A-V also strongly affects TG levels, but the potential clinical impact and underlying mechanisms are yet to be resolved. Here, we aimed to study the effects of APOA5 genetic variation on CAD risk and plasma lipoproteins through factorial genetic association analyses. Using data from 309,780 European-ancestry participants from the UK Biobank, we evaluated the effects of lower TG levels as a result of genetic variation in APOA5 and/or LPL on CAD risk with or without a background of reduced LDL-C. Next, we compared lower TG levels via APOA5 and LPL variation with over 100 lipoprotein measurements in a combined sample from the Netherlands Epidemiology of Obesity study (N = 4,838) and the Oxford Biobank (N = 6,999). We found that lower TG levels due to combined APOA5 and LPL variation and genetically-influenced lower LDL-C levels afforded the largest reduction in CAD risk (odds ratio: 0.78 (0.73-0.82)). Compared to patients with genetically-influenced lower TG via LPL, genetically-influenced lower TG via APOA5 had similar and independent, but notably larger, effects on the lipoprotein profile. Our results suggest that lower TG levels as a result of APOA5 variation have strong beneficial effects on CAD risk and the lipoprotein profile, which suggest apo A-V may be a potential novel therapeutic target for CAD prevention.


Subject(s)
Apolipoprotein A-V/metabolism , Coronary Artery Disease , Apolipoprotein A-V/genetics , Apolipoproteins A/genetics , Cholesterol, LDL , Coronary Artery Disease/genetics , Humans , Lipoproteins , Triglycerides
15.
Am J Physiol Endocrinol Metab ; 322(3): E319-E329, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35156394

ABSTRACT

DNA damage responses compete for cellular resources with metabolic pathways, but little is known about the metabolic consequences of impaired DNA replication, a process called replication stress. Here we characterized the metabolic consequences of DNA replication stress at endogenous DNA lesions by using mice with a disruption of Rev1, a translesion DNA polymerase specialized in the mutagenic replication of damaged DNA. Male and female Rev1 knockout (KO) mice were compared with wild-type (WT) mice and followed over time to study the natural course of body weight gain and glucose tolerance. Follow-up measurements were performed in female mice for in-depth metabolic characterization. Body weight and fat mass were only increased in female KO mice versus WT mice, whereas glucose intolerance and a reduction in lean mass were observed in both sexes. Female KO mice showed reduced locomotor activity while male KO mice showed increased activity as compared with their WT littermates. Further characterization of female mice revealed that lipid handling was unaffected by Rev1 deletion. An increased respiratory exchange ratio, combined with elevated plasma lactate levels and increased hepatic gluconeogenesis indicated problems with aerobic oxidation and increased reliance on anaerobic glycolysis. Supplementation with the NAD+ precursor nicotinamide riboside to stimulate aerobic respiration failed to restore the metabolic phenotype. In conclusion, replication stress at endogenous DNA lesions induces a complex metabolic phenotype, most likely initiated by muscular metabolic dysfunction and increased dependence on anaerobic glycolysis. Nicotinamide riboside supplementation after the onset of the metabolic impairment did not rescue this phenotype.NEW & NOTEWORTHY An increasing number of DNA lesions interferes with cellular replication leading to metabolic inflexibility. We utilized Rev1 knockout mice as a model for replication stress, and show a sex-dependent metabolic phenotype, with a pronounced reduction of lean mass and glucose tolerance. These data indicate that in obesity, we may end up in an infinite loop where metabolic disturbance promotes the formation of DNA lesions, which in turn interferes with cellular replication causing further metabolic disturbances.


Subject(s)
DNA-Directed DNA Polymerase , Glucose Intolerance , Animals , Body Weight , DNA , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Female , Glucose , Glucose Intolerance/genetics , Male , Mice , Mice, Knockout
16.
Diabetes Care ; 45(3): 674-683, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35085396

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) has heterogeneous patient clinical characteristics and outcomes. In previous work, we investigated the genetic basis of this heterogeneity by clustering 94 T2D genetic loci using their associations with 47 diabetes-related traits and identified five clusters, termed ß-cell, proinsulin, obesity, lipodystrophy, and liver/lipid. The relationship between these clusters and individual-level metabolic disease outcomes has not been assessed. RESEARCH DESIGN AND METHODS: Here we constructed individual-level partitioned polygenic scores (pPS) for these five clusters in 12 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (n = 454,193) and tested for cross-sectional association with T2D-related outcomes, including blood pressure, renal function, insulin use, age at T2D diagnosis, and coronary artery disease (CAD). RESULTS: Despite all clusters containing T2D risk-increasing alleles, they had differential associations with metabolic outcomes. Increased obesity and lipodystrophy cluster pPS, which had opposite directions of association with measures of adiposity, were both significantly associated with increased blood pressure and hypertension. The lipodystrophy and liver/lipid cluster pPS were each associated with CAD, with increasing and decreasing effects, respectively. An increased liver/lipid cluster pPS was also significantly associated with reduced renal function. The liver/lipid cluster includes known loci linked to liver lipid metabolism (e.g., GCKR, PNPLA3, and TM6SF2), and these findings suggest that cardiovascular disease risk and renal function may be impacted by these loci through their shared disease pathway. CONCLUSIONS: Our findings support that genetically driven pathways leading to T2D also predispose differentially to clinical outcomes.


Subject(s)
Diabetes Mellitus, Type 2 , Pharmaceutical Preparations , Alleles , Cross-Sectional Studies , Diabetes Mellitus, Type 2/genetics , Genetic Loci , Humans , Obesity/genetics , Pharmaceutical Preparations/metabolism
17.
Geroscience ; 44(3): 1703-1713, 2022 06.
Article in English | MEDLINE | ID: mdl-34932184

ABSTRACT

The significance of classical risk factors in coronary artery disease (CAD) remains unclear in older age due to possible changes in underlying disease pathologies. Therefore, we conducted Mendelian Randomization approaches to investigate the causal relationship between classical risk factors and primary CAD in different age groups. A Mendelian Randomization study was conducted in European-ethnicity individuals from the UK Biobank population. Analyses were performed using data of 22,313 CAD cases (71.6% men) and 407,920 controls (44.5% men). Using logistic regression analyses, we investigated the associations between standardized genetic risk score and primary CAD stratified by age of diagnosis. In addition, feature importance and model accuracy were assessed in different age groups to evaluate predictive power of the genetic risk scores with increasing age. We found age-dependent associations for all classical CAD risk factors. Notably, body mass index (OR 1.22 diagnosis < 50 years; OR 1.02 diagnosis > 70 years), blood pressure (OR 1.12 < 50 years; OR 1.04 > 70 years), LDL cholesterol (OR 1.16 < 50 years; OR 1.02 > 70 years), and triglyceride levels (OR 1.11 < 50 years; 1.04 > 70 years). In line with the Mendelian Randomization analyses, model accuracy and feature importance of the classical risk factors decreased with increasing age of diagnosis. Causal determinants for primary CAD are age dependent with classical CAD risk factors attenuating in relation with primary CAD with increasing age. These results question the need for (some) currently applied cardiovascular disease risk reducing interventions at older age.


Subject(s)
Coronary Artery Disease , Mendelian Randomization Analysis , Aging/genetics , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Female , Genome-Wide Association Study , Humans , Male , Risk Factors
18.
BMC Med ; 19(1): 266, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34727949

ABSTRACT

BACKGROUND: Observational studies suggest interconnections between thyroid status, metabolism, and risk of coronary artery disease (CAD), but causality remains to be proven. The present study aimed to investigate the potential causal relationship between thyroid status and cardiovascular disease and to characterize the metabolomic profile associated with thyroid status. METHODS: Multi-cohort two-sample Mendelian randomization (MR) was performed utilizing genome-wide significant variants as instruments for standardized thyrotropin (TSH) and free thyroxine (fT4) within the reference range. Associations between TSH and fT4 and metabolic profile were investigated in a two-stage manner: associations between TSH and fT4 and the full panel of 161 metabolomic markers were first assessed hypothesis-free, then directional consistency was assessed through Mendelian randomization, another metabolic profile platform, and in individuals with biochemically defined thyroid dysfunction. RESULTS: Circulating TSH was associated with 52/161 metabolomic markers, and fT4 levels were associated with 21/161 metabolomic markers among 9432 euthyroid individuals (median age varied from 23.0 to 75.4 years, 54.5% women). Positive associations between circulating TSH levels and concentrations of very low-density lipoprotein subclasses and components, triglycerides, and triglyceride content of lipoproteins were directionally consistent across the multivariable regression, MR, metabolomic platforms, and for individuals with hypo- and hyperthyroidism. Associations with fT4 levels inversely reflected those observed with TSH. Among 91,810 CAD cases and 656,091 controls of European ancestry, per 1-SD increase of genetically determined TSH concentration risk of CAD increased slightly, but not significantly, with an OR of 1.03 (95% CI 0.99-1.07; p value 0.16), whereas higher genetically determined fT4 levels were not associated with CAD risk (OR 1.00 per SD increase of fT4; 95% CI 0.96-1.04; p value 0.59). CONCLUSIONS: Lower thyroid status leads to an unfavorable lipid profile and a somewhat increased cardiovascular disease risk.


Subject(s)
Cardiovascular Diseases , Thyrotropin , Adult , Aged , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Female , Humans , Lipids , Male , Mendelian Randomization Analysis , Middle Aged , Thyroxine , Young Adult
19.
J Headache Pain ; 22(1): 142, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34819016

ABSTRACT

BACKGROUND: Migraine is a common brain disorder but reliable diagnostic biomarkers in blood are still lacking. Our aim was to identify, using proton nuclear magnetic resonance (1H-NMR) spectroscopy, metabolites in serum that are associated with lifetime and active migraine by comparing metabolic profiles of patients and controls. METHODS: Fasting serum samples from 313 migraine patients and 1512 controls from the Erasmus Rucphen Family (ERF) study were available for 1H-NMR spectroscopy. Data was analysed using elastic net regression analysis. RESULTS: A total of 100 signals representing 49 different metabolites were detected in 289 cases (of which 150 active migraine patients) and 1360 controls. We were able to identify profiles consisting of 6 metabolites predictive for lifetime migraine status and 22 metabolites predictive for active migraine status. We estimated with subsequent regression models that after correction for age, sex, BMI and smoking, the association with the metabolite profile in active migraine remained. Several of the metabolites in this profile are involved in lipid, glucose and amino acid metabolism. CONCLUSION: This study indicates that metabolic profiles, based on serum concentrations of several metabolites, including lipids, amino acids and metabolites of glucose metabolism, can distinguish active migraine patients from controls.


Subject(s)
Metabolome , Migraine Disorders , Humans , Magnetic Resonance Spectroscopy , Metabolomics , Proton Magnetic Resonance Spectroscopy
20.
J Am Heart Assoc ; 10(23): e022567, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34796734

ABSTRACT

Background Dietary intake and blood concentrations of vitamins E and C, lycopene, and carotenoids have been associated with a lower risk of incident (ischemic) stroke. However, causality cannot be inferred from these associations. Here, we investigated causality by analyzing the associations between genetically influenced antioxidant levels in blood and ischemic stroke using Mendelian randomization. Methods and Results For each circulating antioxidant (vitamins E and C, lycopene, ß-carotene, and retinol), which were assessed as either absolute blood levels and/or high-throughput metabolite levels, independent genetic instrumental variables were selected from earlier genome-wide association studies (P<5×10-8). We used summary statistics for single-nucleotide polymorphisms-stroke associations from 3 European-ancestry cohorts (cases/controls): MEGASTROKE (60 341/454 450), UK Biobank (2404/368 771), and the FinnGen study (8046/164 286). Mendelian randomization analyses were performed on each exposure per outcome cohort using inverse variance-weighted analyses and subsequently meta-analyzed. In a combined sample of 1 058 298 individuals (70 791 cases), none of the genetically influenced absolute antioxidants or antioxidant metabolite concentrations were causally associated with a lower risk of ischemic stroke. For absolute antioxidants levels, the odds ratios (ORs) ranged between 0.94 (95% CI, 0.85-1.05) for vitamin C and 1.04 (95% CI, 0.99-1.08) for lycopene. For metabolites, ORs ranged between 1.01 (95% CI, 0.98-1.03) for retinol and 1.12 (95% CI, 0.88-1.42) for vitamin E. Conclusions This study did not provide evidence for a causal association between dietary-derived antioxidant levels and ischemic stroke. Therefore, antioxidant supplements to increase circulating levels are unlikely to be of clinical benefit to prevent ischemic stroke.


Subject(s)
Antioxidants , Diet , Ischemic Stroke , Antioxidants/administration & dosage , Antioxidants/analysis , Diet/statistics & numerical data , Genome-Wide Association Study , Humans , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Ischemic Stroke/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...