Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(12): 4345-4354, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33690749

ABSTRACT

Chromium(iii) complexes of chelating diphosphines, with PNP or PCNCP backbones, are excellent catalysts for ethylene tetra- and/or trimerisations. A missing link within this ligand series are unsymmetric chelating diphosphines based on a PCNP scaffold. New bidentate PCNP ligands of the type Ph2PCH2N(R)PPh2 (R = 1-naphthyl or 5-quinoline groups, 2a-d) have been synthesised and shown to be extremely effective ligands for ethylene tri-/tetramerisations. Three representative tetracarbonyl Cr0 complexes bearing a single PN(R)P (5), PCN(R)P (6), or PCN(R)CP (7) diphosphine (R = 1-naphthyl) have been prepared from Cr(CO)4(η4-nbd) (nbd = norbornadiene). Furthermore we report a single crystal X-ray diffraction study of these compounds and discuss their structural parameters.

2.
Chempluschem ; 85(10): 2308-2315, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33048469

ABSTRACT

The effect of ethylene tetramerisation ligand structures on 1-octene selectivity is well studied. However, by-product formation is less understood. In this work, a range of PNP ligand structures are correlated with the full product selectivity and with catalyst activity. As steric bulk on the N-substituent increases, the product selectivity shifts from >10 % to < 3% of both C6 cyclics and C16+ by-products. 1-Octene peaks at ca. 70%. Thereafter, only 1-hexene increases. Similar selectivity changes were observed for ortho-Ph-substituted PNP ligands. The C10-14 selectivity was less affected by the ligand structure. The ligand effect on the changes in selectivity is explained mechanistically. Lastly, an increase in ligand steric bulk was found to improve catalyst activity and reduce polymer formation by an order of magnitude. It is proposed that steric bulk promotes formation of cationic catalytic species which are responsible for selective ethylene oligomerisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...