Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Haptics ; 14(1): 174-187, 2021.
Article in English | MEDLINE | ID: mdl-33085630

ABSTRACT

Haptic terrain rendering is limited in existing Virtual Reality (VR) systems. This article describes integration of the Smart Shoe (SS) for physical terrain display with the TreadPort VR system. The SS renders both gross sloped terrain and subtle sensations of stepping on small objects or uneven surfaces. The TreadPort projects terrain on the floor and the SS renders terrain that the user steps upon via motion tracking. The research is motivated towards eventually providing gait training for people with Parkinson's Disease (PD), hence this work presents a pilot study evaluating haptic terrain rendering with healthy elderly and PD participants wearing the SS within the TreadPort. Uneven cobblestone surfaces are rendered by the SS as the participant steps on their graphical representation in VR. While posthoc analysis shows the study is underpowered, kinematic and spatiotemporal results derived from motion capture data demonstrates kinesthetic response (e.g., increased maximum ankle angle and minimum toe clearance, reduced minimum ankle angle and knee angle) provided by the SS. Questionnaire data shows increased VR realism and difficulty walking on cobbled terrain using SS rendering. Thus, results indicate that the integrated haptic system demonstrates promise in potential gait training for PD in future work.


Subject(s)
Virtual Reality , Aged , Biomechanical Phenomena , Gait , Humans , Pilot Projects , Shoes
2.
IEEE Trans Vis Comput Graph ; 17(7): 888-99, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21546652

ABSTRACT

The display units integrated in today's head-mounted displays (HMDs) provide only a limited field of view (FOV) to the virtual world. In order to present an undistorted view to the virtual environment (VE), the perspective projection used to render the VE has to be adjusted to the limitations caused by the HMD characteristics. In particular, the geometric field of view (GFOV), which defines the virtual aperture angle used for rendering of the 3D scene, is set up according to the display field of view (DFOV). A discrepancy between these two fields of view distorts the geometry of the VE in a way that either minifies or magnifies the imagery displayed to the user. It has been shown that this distortion has the potential to affect a user's perception of the virtual space, sense of presence, and performance on visual search tasks. In this paper, we analyze the user's perception of a VE displayed in a HMD, which is rendered with different GFOVs. We introduce a psychophysical calibration method to determine the HMD's actual field of view, which may vary from the nominal values specified by the manufacturer. Furthermore, we conducted two experiments to identify perspective projections for HMDs, which are identified as natural by subjects--even if these perspectives deviate from the perspectives that are inherently defined by the DFOV. In the first experiment, subjects had to adjust the GFOV for a rendered virtual laboratory such that their perception of the virtual replica matched the perception of the real laboratory, which they saw before the virtual one. In the second experiment, we displayed the same virtual laboratory, but restricted the viewing condition in the real world to simulate the limited viewing condition in a HMD environment. We found that subjects evaluate a GFOV as natural when it is larger than the actual DFOV of the HMD--in some cases up to 50 percent--even when subjects viewed the real space with a limited field of view.


Subject(s)
Man-Machine Systems , User-Computer Interface , Visual Fields/physiology , Visual Perception/physiology , Adult , Calibration , Female , Head , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Psychophysics
3.
IEEE Trans Vis Comput Graph ; 17(9): 1223-33, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21301028

ABSTRACT

In visual perception, change blindness describes the phenomenon that persons viewing a visual scene may apparently fail to detect significant changes in that scene. These phenomena have been observed in both computer-generated imagery and real-world scenes. Several studies have demonstrated that change blindness effects occur primarily during visual disruptions such as blinks or saccadic eye movements. However, until now the influence of stereoscopic vision on change blindness has not been studied thoroughly in the context of visual perception research. In this paper, we introduce change blindness techniques for stereoscopic virtual reality (VR) systems, providing the ability to substantially modify a virtual scene in a manner that is difficult for observers to perceive. We evaluate techniques for semiimmersive VR systems, i.e., a passive and active stereoscopic projection system as well as an immersive VR system, i.e., a head-mounted display, and compare the results to those of monoscopic viewing conditions. For stereoscopic viewing conditions, we found that change blindness phenomena occur with the same magnitude as in monoscopic viewing conditions. Furthermore, we have evaluated the potential of the presented techniques for allowing abrupt, and yet significant, changes of a stereoscopically displayed virtual reality environment.


Subject(s)
Computer Graphics , Depth Perception/physiology , User-Computer Interface , Visual Perception/physiology , Adult , Humans , Male , Task Performance and Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...