Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38253712

ABSTRACT

Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II often initiates transcription in both directions at the promoter transcription start site, but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements such as enhancers. These bidirectional RNA Polymerase II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the transcription start site or cis-regulatory elements. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both transcription start sites and cis-regulatory elements in A. thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional RNA Polymerase II initiation at both promoters and gene-proximal cis-regulatory elements of A. thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both D. melanogaster and H. sapiens, as well as cis-regulatory elements in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around transcription start sites in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.


Subject(s)
Arabidopsis , Chromatin , Animals , Chromatin/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Initiation Site , Plants/genetics
2.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961174

ABSTRACT

The incorporation of histone variants, distinct paralogs of core histones, into chromatin affects all DNA-templated processes in the cell, including the regulation of transcription. In recent years, much research has been focused on H2A.Z, an evolutionarily conserved H2A variant found in all eukaryotes. In order to investigate the functional conservation of H2A.Z histones during eukaryotic evolution we transformed h2a.z deficient plants with three human H2A.Z proteins to assess their ability to rescue the mutant defects. We discovered that human H2A.Z.1 and H2A.Z.2.1 fully complement the phenotypic abnormalities of h2a.z plants despite the fact that Arabidopsis and human H2A.Z N-terminal tail sequences are quite divergent. In contrast, the brain-specific splice variant H2A.Z.2.2 has a dominant-negative effect in wild-type plants. Furthermore, H2A.Z.1 almost completely re-establishes normal H2A.Z chromatin occupancy in h2a.z plants and restores the transcript levels of more than 84 % of misexpressed genes. Finally, our hypothesis that the N-terminal tail of Arabidopsis H2A.Z is not crucial for its developmental functions was supported by the ability of N-terminal end truncations of Arabidopsis HTA11 to largely rescue the defects of h2a.z mutants.

3.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961418

ABSTRACT

Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II (Pol II) often initiates transcription in both directions at the promoter transcription start site (TSS), but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements (CREs) such as enhancers. These bidirectional Pol II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the TSS or CRE. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both TSSs and CREs in Arabidopsis thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional Pol II initiation at both promoters and gene-proximal CREs of Arabidopsis thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both Drosophila melanogaster and Homo sapiens, as well as CREs in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around TSSs in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.

4.
Dev Biol ; 469: 1-11, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32950464

ABSTRACT

The regulation of formation of the Drosophila heart by the Nkx 2.5 homologue Tinman is a key event during embryonic development. In this study, we identify the highly conserved transcription cofactor Akirin as a key factor in the earliest induction of tinman by the Twist transcription cofactor. akirin mutant embryos display a variety of morphological defects in the heart, including abnormal spacing between rows of aortic cells and abnormal patterning of the aortic outflow tract. akirin mutant embryos have a greatly reduced level of tinman transcripts, together with a reduction of Tinman protein in the earliest stages of cardiac patterning. Further, akirin mutants have reduced numbers of Tinman-positive cardiomyoblasts, concomitant with disrupted patterning and organization of the heart. Finally, despite the apparent formation of the heart in akirin mutants, these mutant hearts exhibit fewer coordinated contractions in akirin mutants compared with wild-type hearts. These results indicate that Akirin is crucial for the first induction of tinman by the Twist transcription factor, and that the success of the cardiac patterning program is highly dependent upon establishing the proper level of tinman at the earliest steps of the cardiac developmental pathway.


Subject(s)
Drosophila Proteins/biosynthesis , Drosophila Proteins/physiology , Drosophila melanogaster/embryology , Nuclear Proteins/physiology , Repressor Proteins/biosynthesis , Trans-Activators/biosynthesis , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Heart/embryology , Mutation , Myocardial Contraction , Myocardium/metabolism , Myocardium/pathology , Nuclear Proteins/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Trans-Activators/genetics , Twist-Related Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...