Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(6): e0267682, 2022.
Article in English | MEDLINE | ID: mdl-35657963

ABSTRACT

Evaluating novel compounds for neuroprotective effects in animal models of traumatic brain injury (TBI) is a protracted, labor-intensive and costly effort. However, the present lack of effective treatment options for TBI, despite decades of research, shows the critical need for alternative methods for screening new drug candidates with neuroprotective properties. Because natural products have been a leading source of new therapeutic agents for human diseases, we used an in vitro model of stretch injury to rapidly assess pro-survival effects of three bioactive compounds, two isolated from natural products (clovanemagnolol [CM], vinaxanthone [VX]) and the third, a dietary compound (pterostilbene [PT]) found in blueberries. The stretch injury experiments were not used to validate drug efficacy in a comprehensive manner but used primarily, as proof-of-principle, to demonstrate that the neuroprotective potential of each bioactive agent can be quickly assessed in an immortalized hippocampal cell line in lieu of comprehensive testing in animal models of TBI. To gain mechanistic insights into potential molecular mechanisms of neuroprotective effects, we performed a pathway-specific PCR array analysis of the effects of CM on the rat hippocampus and microRNA sequencing analysis of the effects of VX and PT on cultured hippocampal progenitor neurons. We show that the neuroprotective properties of these natural compounds are associated with altered expression of several genes or microRNAs that have functional roles in neurodegeneration or cell survival. Our approach could help in quickly assessing multiple natural products for neuroprotective properties and expedite the process of new drug discovery for TBI therapeutics.


Subject(s)
Biological Products , Brain Injuries, Traumatic , Neuroprotective Agents , Animals , Biological Products/therapeutic use , Cell Line , Disease Models, Animal , Hippocampus/metabolism , Neuroprotective Agents/therapeutic use , Rats
2.
PLoS One ; 14(8): e0221163, 2019.
Article in English | MEDLINE | ID: mdl-31442236

ABSTRACT

Patients with traumatic brain injury (TBI) are frequently diagnosed with depression. Together, these two leading causes of death and disability significantly contribute to the global burden of healthcare costs. However, there are no drug treatments for TBI and antidepressants are considered off-label for depression in patients with TBI. In molecular profiling studies of rat hippocampus after experimental TBI, we found that TBI altered the expression of a subset of small, non-coding, microRNAs (miRNAs). One known neuroprotective compound (17ß-estradiol, E2), and two experimental neuroprotective compounds (JM6 and PMI-006), reversed the effects of TBI on miRNAs. Subsequent in silico analyses revealed that the injury-altered miRNAs were predicted to regulate genes involved in depression. Thus, we hypothesized that drug-induced miRNA profiles can be used to identify compounds with antidepressant properties. To confirm this hypothesis, we examined miRNA expression in hippocampi of injured rats treated with one of three known antidepressants (imipramine, fluoxetine and sertraline). Bioinformatic analyses revealed that TBI, potentially via its effects on multiple regulatory miRNAs, dysregulated transcriptional networks involved in neuroplasticity, neurogenesis, and circadian rhythms- networks known to adversely affect mood, cognition and memory. As did E2, JM6, and PMI-006, all three antidepressants reversed the effects of TBI on multiple injury-altered miRNAs. Furthermore, JM6 reduced TBI-induced inflammation in the hippocampus and depression-like behavior in the forced swim test; these are both properties of classic antidepressant drugs. Our results support the hypothesis that miRNA expression signatures can identify neuroprotective and antidepressant properties of novel compounds and that there is substantial overlap between neuroprotection and antidepressant properties.


Subject(s)
Antidepressive Agents/pharmacology , Brain Injuries, Traumatic/drug therapy , Depression/drug therapy , MicroRNAs/genetics , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Computational Biology , Depression/complications , Depression/genetics , Depression/pathology , Disease Models, Animal , Estradiol/pharmacology , Fluoxetine/pharmacology , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/pathology , Humans , Imipramine/pharmacology , Rats , Sertraline/pharmacology , Sulfonamides/pharmacology , Thiazoles/pharmacology
3.
PLoS One ; 14(4): e0214741, 2019.
Article in English | MEDLINE | ID: mdl-30943276

ABSTRACT

There are no existing treatments for the long-term degenerative effects of traumatic brain injury (TBI). This is due, in part, to our limited understanding of chronic TBI and uncertainty about which proposed mechanisms for long-term neurodegeneration are amenable to treatment with existing or novel drugs. Here, we used microarray and pathway analyses to interrogate TBI-induced gene expression in the rat hippocampus and cortex at several acute, subchronic and chronic intervals (24 hours, 2 weeks, 1, 2, 3, 6 and 12 months) after parasagittal fluid percussion injury. We used Ingenuity pathway analysis (IPA) and Gene Ontology enrichment analysis to identify significantly expressed genes and prominent cell signaling pathways that are dysregulated weeks to months after TBI and potentially amenable to therapeutic modulation. We noted long-term, coordinated changes in expression of genes belonging to canonical pathways associated with the innate immune response (i.e., NF-κB signaling, NFAT signaling, Complement System, Acute Phase Response, Toll-like receptor signaling, and Neuroinflammatory signaling). Bioinformatic analysis suggested that dysregulation of these immune mediators-many are key hub genes-would compromise multiple cell signaling pathways essential for homeostatic brain function, particularly those involved in cell survival and neuroplasticity. Importantly, the temporal profile of beneficial and maladaptive immunoregulatory genes in the weeks to months after the initial TBI suggests wider therapeutic windows than previously indicated.


Subject(s)
Brain Injuries, Traumatic/metabolism , Gene Expression Regulation , Acute-Phase Proteins/metabolism , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/immunology , Complement System Proteins/metabolism , Computational Biology , Gene Expression Profiling , Male , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Principal Component Analysis , Proteostasis , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Signal Transduction , Toll-Like Receptors/metabolism
4.
Sci Rep ; 8(1): 14994, 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30297835

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
Sci Rep ; 7(1): 6645, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28751711

ABSTRACT

The underlying molecular mechanisms of how dysregulated microRNAs (miRNAs) cause neurodegeneration after traumatic brain injury (TBI) remain elusive. Here we analyzed the biological roles of approximately 600 genes - we previously found these dysregulated in dying and surviving rat hippocampal neurons - that are targeted by ten TBI-altered miRNAs. Bioinformatic analysis suggests that neurodegeneration results from a global miRNA-mediated suppression of genes essential for maintaining proteostasis; many are hub genes - involved in RNA processing, cytoskeletal metabolism, intracellular trafficking, cell cycle progression, repair/maintenance, bioenergetics and cell-cell signaling - whose disrupted expression is linked to human disease. Notably, dysregulation of these essential genes would significantly impair synaptic function and functional brain connectivity. In surviving neurons, upregulated miRNA target genes are co-regulated members of prosurvival pathways associated with cellular regeneration, neural plasticity, and development. This study captures the diversity of miRNA-regulated genes that may be essential for cell repair and survival responses after TBI.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Cell Death , Gene Expression Regulation , Hippocampus/physiopathology , Proteostasis Deficiencies/complications , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/genetics , Cell Survival , Gene Expression Profiling , Male , Neurodegenerative Diseases/etiology , Neuronal Plasticity , Neurons/physiology , Proteostasis Deficiencies/etiology , Rats
6.
J Exp Med ; 212(5): 665-80, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25870199

ABSTRACT

Blood flow promotes emergence of definitive hematopoietic stem cells (HSCs) in the developing embryo, yet the signals generated by hemodynamic forces that influence hematopoietic potential remain poorly defined. Here we show that fluid shear stress endows long-term multilineage engraftment potential upon early hematopoietic tissues at embryonic day 9.5, an embryonic stage not previously described to harbor HSCs. Effects on hematopoiesis are mediated in part by a cascade downstream of wall shear stress that involves calcium efflux and stimulation of the prostaglandin E2 (PGE2)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling axis. Blockade of the PGE2-cAMP-PKA pathway in the aorta-gonad-mesonephros (AGM) abolished enhancement in hematopoietic activity. Furthermore, Ncx1 heartbeat mutants, as well as static cultures of AGM, exhibit lower levels of expression of prostaglandin synthases and reduced phosphorylation of the cAMP response element-binding protein (CREB). Similar to flow-exposed cultures, transient treatment of AGM with the synthetic analogue 16,16-dimethyl-PGE2 stimulates more robust engraftment of adult recipients and greater lymphoid reconstitution. These data provide one mechanism by which biomechanical forces induced by blood flow modulate hematopoietic potential.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Dinoprostone/metabolism , Embryo, Mammalian/embryology , Signal Transduction/physiology , Stress, Physiological/physiology , Animals , Blood Flow Velocity , Cyclic AMP/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Dinoprostone/genetics , Embryo, Mammalian/cytology , Mesonephros/blood supply , Mesonephros/cytology , Mesonephros/embryology , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...