Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 389, 2020.
Article in English | MEDLINE | ID: mdl-32351521

ABSTRACT

The effects of ionising radiation (IR) on plants are important for environmental protection but also in agriculture, horticulture, space science, and plant stress biology. Much current understanding of the effects of IR on plants derives from acute high-dose studies but exposure to IR in the environment frequently occurs at chronic low dose rates. Chronic low dose-rate studies have primarily been field based and examined genetic or cytogenetic endpoints. Here we report research that investigated developmental, morphological and physiological effects of IR on Arabidopsis thaliana grown over 7 generations and exposed for five generations to chronic low doses of either 137Cs (at a dose rate of c. 40 µGy/h from ß/γ emissions) or 10 µM CdCl2. In some generations there were significant differences between treatments in the timing of key developmental phases and in leaf area or symmetry but there were, on the basis of the chosen endpoints, no long-term effects of the different treatments. Occasional measurements also detected no effects on root growth, seed germination rates or redox poise but in the generation in which it was measured exposure to IR did decrease DNA-methylation significantly. The results are consistent with the suggestion that chronic exposure to c. 40 µGy/h can have some effects on some traits but that this does not affect function across multiple generations at the population level. This is explained by the redundancy and/or degeneracy between biological levels of organization in plants that produces a relatively loose association between genotype and phenotype. The importance of this explanation to understanding plant responses to stressors such as IR is discussed. We suggest that the data reported here provide increased confidence in the Derived Consideration Reference Levels (DCRLs) recommended by the International Commission for Radiological Protection (ICRP) by providing data from controlled conditions and helping to contextualize effects reported from field studies. The differing sensitivity of plants to IR is not well understood and further investigation of it would likely improve the use of DCRLs for radiological protection.

2.
J Environ Radioact ; 133: 31-4, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24011856

ABSTRACT

Predicting soil-to-plant transfer of radionuclides is restricted by the range of species for which concentration ratios (CRs) have been measured. Here the radioecological utility of meta-analyses of phylogenetic effects on alkali earth metals will be explored for applications such as 'gap-filling' of CRs, the identification of sentinel biomonitor plants and the selection of taxa for phytoremediation of radionuclide contaminated soils. REML modelling of extensive CR/concentration datasets shows that the concentrations in plants of Ca, Mg and Sr are significantly influenced by phylogeny. Phylogenetic effects of these elements are shown here to be similar. Ratios of Ca/Mg and Ca/Sr are known to be quite stable in plants so, assuming that Sr/Ra ratios are stable, phylogenetic effects and estimated mean CRs are used to predict Ra CRs for groups of plants with few measured data. Overall, there are well quantified plant variables that could contribute significantly to improving predictions of the fate radioisotopes in the soil-plant system.


Subject(s)
Radioisotopes/chemistry , Soil/chemistry , Plants/metabolism , Strontium/chemistry
3.
Radiat Environ Biophys ; 49(4): 613-23, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20809227

ABSTRACT

Soil-to-plant transfer of radionuclides can be related to plant evolutionary history (phylogeny). For some species and radionuclides the effect is significant enough to be useful in predicting Transfer Factors (TFs). Here a Residual Maximum Likelihood (REML)-based mixed model and a recent plant phylogeny are used to compile data on soil-to-plant transfer of radionuclides and to show how the phylogeny can be used to fill gaps in TFs. Using published data, generic means for TFs are used to anchor the data from REML modelling and hence predict TFs for important groups of plants. Radionuclides of Cs are used as an example. With a generic soil-to-plant TF of 0.07, TFs of 0.035 and 0.085 are predicted for monocot and eudicot gaps, respectively. Also demonstrated is how the known effects of soil conditions can be predicted across plant groups-predicted Cs TFs for gap-filling across all flowering plants are calculated for sandy loams with and without waterlogging. Predictions of TFs for Sr, Co, Cl and Ru are also given. Overall, the results show that general predictions of TFs based on phylogeny are possible-a significant contribution to gap filling for TFs.


Subject(s)
Radiation Monitoring/methods , Radioisotopes/chemistry , Soil Pollutants, Radioactive/analysis , Cesium/chemistry , Ecosystem , Environmental Monitoring/methods , Likelihood Functions , Phylogeny , Plants/radiation effects , Radioisotopes/analysis , Regression Analysis , Soil , Species Specificity
4.
Int J Phytoremediation ; 11(7): 623-39, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19810359

ABSTRACT

An investigation into the phylogenetic variation of plant tolerance and the root and shoot uptake of organic contaminants was undertaken. The aim was to determine if particular families or genera were tolerant of or accumulated organic pollutants. Data were collected from sixty-nine studies. The variation between experiments was accounted for using a residual maximum likelihood analysis to approximate means for individual taxa. A nested ANOVA was subsequently used to determine differences at a number of differing phylogenetic levels. Significant differences were observed at a number of phylogenetic levels for the tolerance to TPH, the root concentration factor and the shoot concentration factor. There was no correlation between the uptake of organic pollutants and that of heavy metals. The data indicate that plant phylogeny is an important influence on both the plant tolerance and uptake of organic pollutants. If this study can be expanded, such information can be used when designing plantings for phytoremediation or risk reduction during the restoration of contaminated sites.


Subject(s)
Biodegradation, Environmental , Genetic Variation , Organic Chemicals/metabolism , Plants/genetics , Plants/metabolism , Soil Pollutants/metabolism , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plants/classification
5.
J Environ Qual ; 34(5): 1478-89, 2005.
Article in English | MEDLINE | ID: mdl-16091600

ABSTRACT

For (134/137)Cs, and many other soil contaminants, research into transfer to plants has focused on particular crops and phytoremediation candidates, producing uptake data for a small proportion of all plant taxa. Despite the significance of differences in uptake between plant taxa, the capacity of soil-to-plant transfer models to predict them is currently confined to those taxa for which data exist, there being no method to predict uptake by other taxa. We used residual maximum likelihood (REML) analysis on data from experiments (including 89 plant taxa from China plus 32 phytoremediation candidates) together with data from the literature, to construct a database of relative (134/137)Cs concentrations in 273 plant taxa. The REML (134/137)Cs concentrations in plants are not normally distributed but significantly clustered. Analysis of variance (ANOVA), coded with a recent ordinal phylogeny for flowering plants, showed that plant taxa do not behave independently for (134/137)Cs concentration because 42 and 15% of inter-taxa differences are associated with phylogeny above the species and ordinal level, respectively. In general, Eudicots, and especially the Caryophyllales, Asterales, and Brassicales, have high (134/137)Cs concentrations, while the Fabales and Magnoliids, in particular Poales, have low (134/137)Cs concentrations. Plants of the stress-tolerant ruderal (S-R) growth strategy sensu Grime have, in general, high concentrations of Cs, while those of the competitive (C) and generalist (C-S-R) strategies have low concentrations, although these effects are less pronounced than those of phylogeny. Plant phylogeny and growth strategy might thus be used to predict a significant portion of inter-taxa differences in plant uptake of (134/137)Cs.


Subject(s)
Cesium Radioisotopes/pharmacokinetics , Phylogeny , Plants/metabolism , Adaptation, Physiological/physiology , Analysis of Variance , China , Databases, Factual , Likelihood Functions , Plant Development , Plants/genetics , Species Specificity
6.
New Phytol ; 152(1): 9-27, 2001 Oct.
Article in English | MEDLINE | ID: mdl-35974475

ABSTRACT

• The influence of phylogeny on shoot heavy metal content in plants was investigated and the hypothesis tested that traits impacting on the accumulation of cadmium, chromium, copper, nickel, lead and zinc in plant shoots are associated. • Data suitable for comparative analyses were generated from a literature survey, using a residual maximum likelihood (REML) procedure. Both pair-wise regressions and principal components analyses (PCA) were performed on independent contrasts of shoot metal content. • Significant variation in shoot metal content occurred at the classification level of order and above, suggesting an ancient evolution of traits. Traits impacting on the accumulation of metals in plant shoots were associated. • This information can be used to improve predictions of soil-to-plant metal transfer, to formulate hypotheses on the origins of metal-accumulating phenotypes and to inform the exploitation of plant genetic resources for nutritional improvement and phytoremediation.

SELECTION OF CITATIONS
SEARCH DETAIL
...